mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-10 07:46:59 +00:00
model: add Qwen2.5-VL support (#10385)
This commit is contained in:
@@ -119,6 +119,21 @@ type Context interface {
|
||||
Layer(int) Context
|
||||
}
|
||||
|
||||
// RopeOptions contains optional parameters for RoPE function
|
||||
type RopeOptions struct {
|
||||
OriginalContextLen uint32
|
||||
}
|
||||
|
||||
// RopeOption defines a function that modifies RopeOpts
|
||||
type RopeOption func(*RopeOptions)
|
||||
|
||||
// WithContextLen sets a custom context length
|
||||
func WithContextLen(len uint32) RopeOption {
|
||||
return func(opts *RopeOptions) {
|
||||
opts.OriginalContextLen = len
|
||||
}
|
||||
}
|
||||
|
||||
type Tensor interface {
|
||||
Dim(n int) int
|
||||
Stride(n int) int
|
||||
@@ -144,7 +159,7 @@ type Tensor interface {
|
||||
AvgPool2D(ctx Context, k, s int, p float32) Tensor
|
||||
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
|
||||
|
||||
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32) Tensor
|
||||
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim, ropeType uint32, base, scale float32, options ...RopeOption) Tensor
|
||||
IM2Col(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
|
||||
|
||||
Sin(ctx Context) Tensor
|
||||
@@ -172,6 +187,7 @@ type Tensor interface {
|
||||
Duplicate(ctx Context) Tensor
|
||||
|
||||
TopK(ctx Context, k int) Tensor
|
||||
Argsort(ctx Context) Tensor
|
||||
}
|
||||
|
||||
// ScaledDotProductAttention implements a fused attention
|
||||
|
||||
@@ -1060,7 +1060,17 @@ const (
|
||||
ropeTypeVision C.int = 24
|
||||
)
|
||||
|
||||
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim, ropeType uint32, ropeBase, ropeScale float32) ml.Tensor {
|
||||
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim, ropeType uint32, ropeBase, ropeScale float32, options ...ml.RopeOption) ml.Tensor {
|
||||
// Default options
|
||||
opts := &ml.RopeOptions{
|
||||
OriginalContextLen: 131072,
|
||||
}
|
||||
|
||||
// Apply any provided options
|
||||
for _, option := range options {
|
||||
option(opts)
|
||||
}
|
||||
|
||||
if ropeFactors == nil {
|
||||
ropeFactors = &Tensor{b: t.b}
|
||||
}
|
||||
@@ -1073,16 +1083,19 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
|
||||
return &Tensor{
|
||||
b: t.b,
|
||||
t: C.ggml_rope_ext(
|
||||
ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
|
||||
ctx.(*Context).ctx,
|
||||
dequant,
|
||||
positionIDs.(*Tensor).t,
|
||||
ropeFactors.(*Tensor).t,
|
||||
C.int(ropeDim),
|
||||
C.int(ropeType),
|
||||
131072, // YaRN n_ctx_train
|
||||
C.int(opts.OriginalContextLen),
|
||||
C.float(ropeBase),
|
||||
C.float(ropeScale),
|
||||
0., // YaRN ext_factor
|
||||
1., // YaRN attn_factor
|
||||
32., // YaRN beta_fast
|
||||
1., // YaRN beta_slow
|
||||
C.float(0.0),
|
||||
C.float(1.0),
|
||||
C.float(32.0),
|
||||
C.float(1.0),
|
||||
),
|
||||
}
|
||||
}
|
||||
@@ -1176,3 +1189,10 @@ func (t *Tensor) TopK(ctx ml.Context, k int) ml.Tensor {
|
||||
t: C.ggml_top_k(ctx.(*Context).ctx, t.t, C.int(k)),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Argsort(ctx ml.Context) ml.Tensor {
|
||||
return &Tensor{
|
||||
b: t.b,
|
||||
t: C.ggml_argsort(ctx.(*Context).ctx, t.t, C.GGML_SORT_ORDER_ASC),
|
||||
}
|
||||
}
|
||||
|
||||
43
ml/backend/ggml/ggml/src/ggml-cpu/ops.cpp
vendored
43
ml/backend/ggml/ggml/src/ggml-cpu/ops.cpp
vendored
@@ -6822,6 +6822,45 @@ static void ggml_compute_forward_argsort_f32(
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_argsort_i32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(nb0 == sizeof(int32_t));
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int64_t nr = ggml_nrows(src0);
|
||||
|
||||
ggml_sort_order order = (ggml_sort_order) ggml_get_op_params_i32(dst, 0);
|
||||
|
||||
for (int64_t i = ith; i < nr; i += nth) {
|
||||
int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
|
||||
const int32_t * src_data = (int32_t *)((char *) src0->data + i*nb01);
|
||||
|
||||
for (int64_t j = 0; j < ne0; j++) {
|
||||
dst_data[j] = j;
|
||||
}
|
||||
|
||||
// C doesn't have a functional sort, so we do a bubble sort instead
|
||||
for (int64_t j = 0; j < ne0; j++) {
|
||||
for (int64_t k = j + 1; k < ne0; k++) {
|
||||
if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
|
||||
(order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
|
||||
int32_t tmp = dst_data[j];
|
||||
dst_data[j] = dst_data[k];
|
||||
dst_data[k] = tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_argsort(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
@@ -6833,6 +6872,10 @@ void ggml_compute_forward_argsort(
|
||||
{
|
||||
ggml_compute_forward_argsort_f32(params, dst);
|
||||
} break;
|
||||
case GGML_TYPE_I32:
|
||||
{
|
||||
ggml_compute_forward_argsort_i32(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
|
||||
102
ml/backend/ggml/ggml/src/ggml-cuda/argsort.cu
vendored
102
ml/backend/ggml/ggml/src/ggml-cuda/argsort.cu
vendored
@@ -85,13 +85,107 @@ static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, co
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<ggml_sort_order order>
|
||||
static __global__ void k_argsort_i32_i32(const int32_t * x, int * dst, const int ncols, const int ncols_pad) {
|
||||
extern __shared__ int shared_mem[];
|
||||
int * indices = shared_mem;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
const int row = blockIdx.y;
|
||||
|
||||
// Initialize all indices, handling the case where threads < ncols_pad
|
||||
for (int i = tid; i < ncols_pad; i += blockDim.x) {
|
||||
indices[i] = i < ncols ? i : 0; // Use 0 for padding indices
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// Bitonic sort
|
||||
for (int k = 2; k <= ncols_pad; k *= 2) {
|
||||
for (int j = k/2; j > 0; j /= 2) {
|
||||
for (int i = tid; i < ncols_pad; i += blockDim.x) {
|
||||
const int ij = i ^ j;
|
||||
if (ij > i) {
|
||||
// Only compare values within the actual data range
|
||||
if (i < ncols && ij < ncols) {
|
||||
if ((i & k) == 0) {
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
if (x[row * ncols + indices[i]] > x[row * ncols + indices[ij]]) {
|
||||
int tmp = indices[i];
|
||||
indices[i] = indices[ij];
|
||||
indices[ij] = tmp;
|
||||
}
|
||||
} else {
|
||||
if (x[row * ncols + indices[i]] < x[row * ncols + indices[ij]]) {
|
||||
int tmp = indices[i];
|
||||
indices[i] = indices[ij];
|
||||
indices[ij] = tmp;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
if (x[row * ncols + indices[i]] < x[row * ncols + indices[ij]]) {
|
||||
int tmp = indices[i];
|
||||
indices[i] = indices[ij];
|
||||
indices[ij] = tmp;
|
||||
}
|
||||
} else {
|
||||
if (x[row * ncols + indices[i]] > x[row * ncols + indices[ij]]) {
|
||||
int tmp = indices[i];
|
||||
indices[i] = indices[ij];
|
||||
indices[ij] = tmp;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
}
|
||||
|
||||
// Write sorted indices to output, only threads handling valid data
|
||||
for (int i = tid; i < ncols; i += blockDim.x) {
|
||||
dst[row * ncols + i] = indices[i];
|
||||
}
|
||||
}
|
||||
|
||||
static void argsort_i32_i32_cuda(const int32_t * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
|
||||
// Bitonic sort requires ncols to be power of 2
|
||||
const int ncols_pad = next_power_of_2(ncols);
|
||||
|
||||
// Ensure thread count doesn't exceed maximum (typically 1024)
|
||||
const int max_threads = 1024; // This is the typical max for most GPUs
|
||||
const int threads_per_block = ncols_pad > max_threads ? max_threads : ncols_pad;
|
||||
|
||||
const dim3 block_dims(threads_per_block, 1, 1);
|
||||
const dim3 block_nums(1, nrows, 1);
|
||||
const size_t shared_mem = ncols_pad * sizeof(int);
|
||||
|
||||
// Check if shared memory size is within limits
|
||||
const size_t max_shared_mem = ggml_cuda_info().devices[ggml_cuda_get_device()].smpb;
|
||||
|
||||
// Instead of logging an error, use GGML_ASSERT with a descriptive message
|
||||
GGML_ASSERT(shared_mem <= max_shared_mem && "argsort: required shared memory exceeds device limit");
|
||||
|
||||
// Launch kernels with the updated thread configuration
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
k_argsort_i32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||||
} else if (order == GGML_SORT_ORDER_DESC) {
|
||||
k_argsort_i32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const float * src0_d = (const float *)src0->data;
|
||||
float * dst_d = (float *)dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
@@ -100,5 +194,9 @@ void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
||||
|
||||
argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
|
||||
if (src0->type == GGML_TYPE_I32) {
|
||||
argsort_i32_i32_cuda((const int32_t *)src0_d, (int *)dst_d, ncols, nrows, order, stream);
|
||||
} else {
|
||||
argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
|
||||
}
|
||||
}
|
||||
|
||||
49
ml/backend/ggml/ggml/src/ggml-cuda/cpy.cu
vendored
49
ml/backend/ggml/ggml/src/ggml-cuda/cpy.cu
vendored
@@ -38,6 +38,13 @@ static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
|
||||
*dsti = *xi;
|
||||
}
|
||||
|
||||
static __device__ void cpy_1_i32_i32(const char * cxi, char * cdsti) {
|
||||
const int32_t * xi = (const int32_t *) cxi;
|
||||
int32_t * dsti = (int32_t *) cdsti;
|
||||
|
||||
*dsti = *xi;
|
||||
}
|
||||
|
||||
template <cpy_kernel_t cpy_1>
|
||||
static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
@@ -68,6 +75,44 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst_direct, const in
|
||||
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
// First, add this template function after the other template functions
|
||||
template <cpy_kernel_t cpy_1>
|
||||
static __global__ void cpy_i32_i32(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t i03 = i/(ne00 * ne01 * ne02);
|
||||
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int64_t i13 = i/(ne10 * ne11 * ne12);
|
||||
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
|
||||
|
||||
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
// Then modify the ggml_cpy_i32_i32_cuda function to use the new template
|
||||
static void ggml_cpy_i32_i32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int graph_cpynode_index) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_i32_i32<cpy_1_i32_i32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
|
||||
const float * xi = (const float *) cxi;
|
||||
block_q8_0 * dsti = (block_q8_0 *) cdsti;
|
||||
@@ -633,6 +678,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
|
||||
ggml_cpy_i32_i32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else {
|
||||
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
@@ -688,6 +735,8 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
|
||||
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||
return (void*) cpy_f32_f16<cpy_1_f16_f32>;
|
||||
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
|
||||
return (void*) cpy_i32_i32<cpy_1_i32_i32>;
|
||||
} else {
|
||||
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
|
||||
Reference in New Issue
Block a user