mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-13 01:07:12 +00:00
Merge upstream ollama/ollama main branch while preserving CUDA 3.7 support
- Added support for new gpt-oss model from upstream - Preserved CUDA Compute Capability 3.7 (Tesla K80) support - Kept CUDA 11 configuration alongside CUDA 12 - Maintained all documentation specific to ollama37 fork - Integrated new tool parsing improvements - Added new backend methods and patches from upstream
This commit is contained in:
268
model/models/gptoss/model.go
Normal file
268
model/models/gptoss/model.go
Normal file
@@ -0,0 +1,268 @@
|
||||
package gptoss
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"math"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/ml/nn/fast"
|
||||
"github.com/ollama/ollama/ml/nn/rope"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
type Transformer struct {
|
||||
model.Base
|
||||
model.BytePairEncoding
|
||||
|
||||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||
TransformerBlocks []TransformerBlock `gguf:"blk"`
|
||||
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||
Output *nn.Linear `gguf:"output,alt:token_embd"`
|
||||
|
||||
Options
|
||||
}
|
||||
|
||||
// Forward implements model.Model.
|
||||
func (m *Transformer) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
||||
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
|
||||
one := ctx.Input().FromFloatSlice([]float32{1}, 1)
|
||||
for i, block := range m.TransformerBlocks {
|
||||
m.Cache.SetLayer(i)
|
||||
if c, ok := m.Cache.(*kvcache.WrapperCache); ok {
|
||||
// Even layers are sliding window attention.
|
||||
c.SetLayerType(i % 2)
|
||||
}
|
||||
|
||||
var outputs ml.Tensor
|
||||
if len(batch.Outputs) > 0 && i == len(m.TransformerBlocks)-1 {
|
||||
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
}
|
||||
|
||||
hiddenStates = block.Forward(ctx, hiddenStates, positions, outputs, one, m.Cache, &m.Options)
|
||||
}
|
||||
|
||||
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
|
||||
return m.Output.Forward(ctx, hiddenStates), nil
|
||||
}
|
||||
|
||||
func (m *Transformer) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
||||
return fast.RoPE(ctx, key, shift, m.headDim(), m.ropeBase, 1./m.ropeScale, m.RoPEOptions()...), nil
|
||||
}
|
||||
|
||||
type Options struct {
|
||||
hiddenSize,
|
||||
numHeads,
|
||||
numKVHeads,
|
||||
keyLength,
|
||||
valueLength,
|
||||
numExperts,
|
||||
numExpertsUsed,
|
||||
originalContextLength int
|
||||
|
||||
eps,
|
||||
ropeBase,
|
||||
ropeScale float32
|
||||
}
|
||||
|
||||
func (o Options) RoPEOptions() []func(*rope.Options) {
|
||||
return []func(*rope.Options){
|
||||
rope.WithTypeNeoX(),
|
||||
rope.WithOriginalContextLength(o.originalContextLength),
|
||||
rope.WithExtrapolationFactor(1.),
|
||||
// NOTE: ggml sets this implicitly so there's no need to set it here
|
||||
// rope.WithAttentionFactor(0.1*float32(math.Log(float64(o.ropeScale))) + 1.0),
|
||||
}
|
||||
}
|
||||
|
||||
func (o Options) headDim() int {
|
||||
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
|
||||
}
|
||||
|
||||
type TransformerBlock struct {
|
||||
Attention *AttentionBlock
|
||||
MLP *MLPBlock
|
||||
}
|
||||
|
||||
func (d *TransformerBlock) Forward(ctx ml.Context, hiddenStates, positions, outputs, one ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
|
||||
if outputs != nil {
|
||||
hiddenStates = hiddenStates.Rows(ctx, outputs)
|
||||
}
|
||||
|
||||
hiddenStates = d.MLP.Forward(ctx, hiddenStates, one, opts)
|
||||
return hiddenStates
|
||||
}
|
||||
|
||||
type AttentionBlock struct {
|
||||
Norm *nn.RMSNorm `gguf:"attn_norm"`
|
||||
QKV *nn.Linear `gguf:"attn_qkv"`
|
||||
Output *nn.Linear `gguf:"attn_out"`
|
||||
Sinks ml.Tensor `gguf:"attn_sinks"`
|
||||
}
|
||||
|
||||
func (attn *AttentionBlock) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
batchSize := hiddenStates.Dim(1)
|
||||
|
||||
residual := hiddenStates
|
||||
hiddenStates = attn.Norm.Forward(ctx, hiddenStates, opts.eps)
|
||||
|
||||
qkv := attn.QKV.Forward(ctx, hiddenStates)
|
||||
|
||||
// query = qkv[..., : num_attention_heads * head_dim].reshape(batch_size, num_attention_heads, head_dim)
|
||||
query := qkv.View(ctx,
|
||||
0,
|
||||
opts.headDim(), qkv.Stride(0)*opts.headDim(),
|
||||
opts.numHeads, qkv.Stride(1),
|
||||
batchSize,
|
||||
)
|
||||
query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
|
||||
|
||||
// key = qkv[..., num_attention_heads * head_dim:(num_attention_heads + num_key_value_heads) * head_dim].reshape(batch_size, num_key_value_heads, head_dim)
|
||||
key := qkv.View(ctx,
|
||||
qkv.Stride(0)*opts.headDim()*opts.numHeads,
|
||||
opts.headDim(), qkv.Stride(0)*opts.headDim(),
|
||||
opts.numKVHeads, qkv.Stride(1),
|
||||
batchSize,
|
||||
)
|
||||
key = fast.RoPE(ctx, key, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
|
||||
|
||||
// value = qkv[..., (num_attention_heads + num_key_value_heads) * head_dim:].reshape(batch_size, num_key_value_heads, head_dim)
|
||||
value := qkv.View(ctx,
|
||||
qkv.Stride(0)*opts.headDim()*(opts.numHeads+opts.numKVHeads),
|
||||
opts.headDim(), qkv.Stride(0)*opts.headDim(),
|
||||
opts.numKVHeads, qkv.Stride(1),
|
||||
batchSize,
|
||||
)
|
||||
|
||||
cache.Put(ctx, key, value)
|
||||
key, value, mask := cache.Get(ctx)
|
||||
|
||||
query = query.Permute(ctx, 0, 2, 1, 3)
|
||||
key = key.Permute(ctx, 0, 2, 1, 3)
|
||||
|
||||
scores := key.MulmatFullPrec(ctx, query)
|
||||
scores = scores.Scale(ctx, 1./math.Sqrt(float64(opts.headDim())))
|
||||
scores = scores.Add(ctx, mask)
|
||||
|
||||
scores = scores.Concat(ctx, attn.Sinks.Reshape(ctx, 1, 1, opts.numHeads, 1).Repeat(ctx, 1, batchSize), 0)
|
||||
scores = scores.Softmax(ctx)
|
||||
scores = scores.Pad(ctx, -1, 0, 0, 0)
|
||||
|
||||
attention := value.Mulmat(ctx, scores)
|
||||
attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
|
||||
|
||||
return attn.Output.Forward(ctx, attention).Add(ctx, residual)
|
||||
}
|
||||
|
||||
type MLPBlock struct {
|
||||
Norm *nn.RMSNorm `gguf:"ffn_norm"`
|
||||
Router *nn.Linear `gguf:"ffn_gate_inp"`
|
||||
GateUp *nn.LinearBatch `gguf:"ffn_gate_up_exps"`
|
||||
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
|
||||
}
|
||||
|
||||
func (mlp *MLPBlock) Forward(ctx ml.Context, hiddenStates, one ml.Tensor, opts *Options) ml.Tensor {
|
||||
hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
|
||||
|
||||
residual := hiddenStates
|
||||
hiddenStates = mlp.Norm.Forward(ctx, hiddenStates, opts.eps)
|
||||
|
||||
hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
|
||||
routingWeights := mlp.Router.Forward(ctx, hiddenStates)
|
||||
|
||||
selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed)
|
||||
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, sequenceLength*batchSize).Rows(ctx, selectedExperts)
|
||||
routingWeights = routingWeights.Reshape(ctx, opts.numExpertsUsed, sequenceLength*batchSize).Softmax(ctx)
|
||||
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExpertsUsed, sequenceLength*batchSize)
|
||||
|
||||
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
|
||||
|
||||
hiddenStates = mlp.GateUp.Forward(ctx, hiddenStates, selectedExperts)
|
||||
hiddenStates = hiddenStates.Reshape(ctx, 2, hiddenStates.Dim(0)/2, hiddenStates.Dim(1), hiddenStates.Dim(2))
|
||||
|
||||
dimStride := []int{hiddenStates.Dim(0) / 2, hiddenStates.Stride(1), hiddenStates.Dim(1), hiddenStates.Stride(2), hiddenStates.Dim(2), hiddenStates.Stride(3), hiddenStates.Dim(3)}
|
||||
|
||||
glu := hiddenStates.View(ctx, 0, dimStride...)
|
||||
glu = glu.Contiguous(ctx)
|
||||
glu = glu.Clamp(ctx, float32(math.Inf(-1)), 7.0)
|
||||
glu = glu.QuickGELU(ctx)
|
||||
|
||||
linear := hiddenStates.View(ctx, hiddenStates.Stride(0), dimStride...)
|
||||
linear = linear.Clamp(ctx, -7.0, 7.0)
|
||||
|
||||
hiddenStates = glu.Mul(ctx, linear.Add(ctx, one))
|
||||
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0)*hiddenStates.Dim(1), hiddenStates.Dim(2), hiddenStates.Dim(3))
|
||||
|
||||
experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
|
||||
experts = experts.Mul(ctx, routingWeights)
|
||||
|
||||
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
|
||||
for i := 1; i < opts.numExpertsUsed; i++ {
|
||||
nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
|
||||
}
|
||||
|
||||
return nextStates.Add(ctx, residual)
|
||||
}
|
||||
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
m := Transformer{
|
||||
TransformerBlocks: make([]TransformerBlock, c.Uint("block_count")),
|
||||
BytePairEncoding: model.NewBytePairEncoding(
|
||||
c.String("tokenizer.ggml.pretokenizer",
|
||||
strings.Join([]string{
|
||||
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
|
||||
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
|
||||
`\p{N}{1,3}`,
|
||||
` ?[^\s\p{L}\p{N}]+[\r\n/]*`,
|
||||
`\s*[\r\n]+`,
|
||||
`\s+(?!\S)`,
|
||||
`\s+`,
|
||||
}, "|"),
|
||||
),
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Types: c.Ints("tokenizer.ggml.token_type"),
|
||||
Merges: c.Strings("tokenizer.ggml.merges"),
|
||||
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
|
||||
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
|
||||
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
||||
EOS: append(
|
||||
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
|
||||
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
||||
),
|
||||
},
|
||||
),
|
||||
Options: Options{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
keyLength: int(c.Uint("attention.key_length")),
|
||||
valueLength: int(c.Uint("attention.value_length")),
|
||||
numExperts: int(c.Uint("expert_count")),
|
||||
numExpertsUsed: int(c.Uint("expert_used_count")),
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base"),
|
||||
ropeScale: c.Float("rope.scaling.factor", 1.),
|
||||
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
|
||||
},
|
||||
}
|
||||
|
||||
m.Cache = kvcache.NewWrapperCache(
|
||||
kvcache.NewSWAMemCache(int32(c.Uint("attention.sliding_window")), 4096, m.Shift),
|
||||
kvcache.NewCausalCache(m.Shift),
|
||||
)
|
||||
m.Cache.SetConfig(ml.CacheConfig{CachePadding: 32, PermutedV: true})
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
model.Register("gptoss", New)
|
||||
}
|
||||
@@ -4,6 +4,7 @@ import (
|
||||
_ "github.com/ollama/ollama/model/models/gemma2"
|
||||
_ "github.com/ollama/ollama/model/models/gemma3"
|
||||
_ "github.com/ollama/ollama/model/models/gemma3n"
|
||||
_ "github.com/ollama/ollama/model/models/gptoss"
|
||||
_ "github.com/ollama/ollama/model/models/llama"
|
||||
_ "github.com/ollama/ollama/model/models/llama4"
|
||||
_ "github.com/ollama/ollama/model/models/mistral3"
|
||||
|
||||
Reference in New Issue
Block a user