set non-causal attention

This commit is contained in:
Michael Yang
2025-03-07 13:52:45 -08:00
parent 631fecc6d9
commit 0df1800436
6 changed files with 57 additions and 25 deletions

View File

@@ -51,8 +51,10 @@ func New(c ml.Config) (model.Model, error) {
Types: c.Uints("tokenizer.ggml.token_type"),
BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
EOS: int32(1),
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOT: int32(106),
AddEOT: c.Bool("tokenizer.ggml.add_eot_token", false),
},
),
ImageProcessor: newImageProcessor(c),
@@ -109,35 +111,46 @@ func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Inpu
for i := range inputs {
if inputs[i].Multimodal == nil {
if len(images) > 0 {
inputs[i].Multimodal = images[0].Multimodal
inputs[i].MultimodalHash = images[0].MultimodalHash
for j := 1; j < len(images); j++ {
for j := range images {
if j == 0 {
inputs[i].Multimodal = images[j].Multimodal
inputs[i].MultimodalHash = images[j].MultimodalHash
} else {
inputs[i].Multimodal = inputs[i].Multimodal.(ml.Tensor).Concat(ctx, images[j].Multimodal.(ml.Tensor), 3)
fnvHash.Reset()
binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
binary.Write(fnvHash, binary.NativeEndian, inputs[j].MultimodalHash)
binary.Write(fnvHash, binary.NativeEndian, images[j].MultimodalHash)
inputs[i].MultimodalHash = fnvHash.Sum64()
}
images = nil
}
images = nil
} else {
images = append(images, inputs[i])
inputs[i].Token = -1
}
}
inputs = slices.DeleteFunc(inputs, func(input input.Input) bool { return input.Token == -1 })
for i := range inputs {
if inputs[i].Token == -1 {
imageInputs := []input.Input{
{Token: 108}, // "\n\n"
{Token: 255999}, // "<start_of_image>""
}
// <image_soft_token>
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 262144}}, 256)...)
// <end_of_image>
imageInputs = append(imageInputs, input.Input{Token: 256000})
inputs = append(inputs[:i], append(imageInputs, inputs[i+1:]...)...)
}
}
return inputs, nil
}
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
var embeddings ml.Tensor
if opts.Multimodal != nil {
embeddings = opts.Multimodal[0].Multimodal.(ml.Tensor)
}
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
@@ -153,7 +166,7 @@ func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
return nil, err
}
return m.TextModel.Forward(ctx, inputs, positions, embeddings, outputs, m.Cache), nil
return m.TextModel.Forward(ctx, inputs, positions, outputs, opts.Multimodal, m.Cache), nil
}
func init() {

View File

@@ -7,6 +7,7 @@ import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type TextOptions struct {
@@ -165,12 +166,15 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
return hiddenState.Add(ctx, residual)
}
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, embeddings, outputs ml.Tensor, cache kvcache.Cache) ml.Tensor {
if embeddings == nil {
embeddings = m.TokenEmbedding.Forward(ctx, inputs)
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, multimodal []input.MultimodalIndex, cache kvcache.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
if multimodal != nil {
visionOutputs := multimodal[0].Multimodal.(ml.Tensor)
offset := multimodal[0].Index - 1 - visionOutputs.Dim(1)
hiddenState = hiddenState.Set(ctx, visionOutputs, offset*hiddenState.Stride(0))
}
hiddenState := embeddings.Scale(ctx, math.Sqrt(float64(m.TextOptions.hiddenSize)))
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextOptions.hiddenSize)))
if len(m.Layers) == gemma27BLayerCount {
m.TextOptions.largeModelScaling = true