mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-12 16:57:04 +00:00
add demo video
This commit is contained in:
@@ -3,12 +3,15 @@ from langchain.chains import RetrievalQA
|
||||
from langchain.embeddings import HuggingFaceEmbeddings
|
||||
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.llms import GPT4All, Ollama
|
||||
from langchain.llms import Ollama
|
||||
import os
|
||||
import argparse
|
||||
import time
|
||||
|
||||
model = os.environ.get("MODEL", "llama2-uncensored")
|
||||
# For embeddings model, the example uses a sentence-transformers model
|
||||
# https://www.sbert.net/docs/pretrained_models.html
|
||||
# "The all-mpnet-base-v2 model provides the best quality, while all-MiniLM-L6-v2 is 5 times faster and still offers good quality."
|
||||
embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME", "all-MiniLM-L6-v2")
|
||||
persist_directory = os.environ.get("PERSIST_DIRECTORY", "db")
|
||||
target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS',4))
|
||||
@@ -44,7 +47,6 @@ def main():
|
||||
# Print the result
|
||||
print("\n\n> Question:")
|
||||
print(query)
|
||||
print(f"\n> Answer (took {round(end - start, 2)} s.):")
|
||||
print(answer)
|
||||
|
||||
# Print the relevant sources used for the answer
|
||||
|
||||
Reference in New Issue
Block a user