Add comprehensive Ollama log checking and configurable LLM judge mode

Test case enhancements:
- TC-RUNTIME-001: Add startup log error checking (CUDA, CUBLAS, CPU fallback)
- TC-RUNTIME-002: Add GPU detection verification, CUDA init checks, error detection
- TC-RUNTIME-003: Add server listening verification, runtime error checks
- TC-INFERENCE-001: Add model loading logs, layer offload verification
- TC-INFERENCE-002: Add inference error checking (CUBLAS/CUDA errors)
- TC-INFERENCE-003: Add API request log verification, response time display

Workflow enhancements:
- Add judge_mode input (simple/llm/dual) to all workflows
- Add judge_model input to specify LLM model for judging
- Configurable via GitHub Actions UI without code changes

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
Shang Chieh Tseng
2025-12-16 23:27:57 +08:00
parent 143e6fa8e4
commit 1a185f7926
10 changed files with 564 additions and 18 deletions

View File

@@ -2,7 +2,33 @@ name: Build Verification
on:
workflow_dispatch: # Manual trigger
inputs:
judge_mode:
description: 'Test judge mode'
required: false
default: 'simple'
type: choice
options:
- 'simple'
- 'llm'
- 'dual'
judge_model:
description: 'LLM model for judging (if llm/dual mode)'
required: false
default: 'gemma3:4b'
type: string
workflow_call: # Called by other workflows
inputs:
judge_mode:
description: 'Test judge mode (simple, llm, dual)'
required: false
default: 'simple'
type: string
judge_model:
description: 'LLM model for judging'
required: false
default: 'gemma3:4b'
type: string
outputs:
result:
description: "Build test result"
@@ -31,8 +57,23 @@ jobs:
id: build-tests
run: |
cd tests
# Build judge flags based on input
JUDGE_FLAGS=""
if [ "${{ inputs.judge_mode }}" = "simple" ] || [ -z "${{ inputs.judge_mode }}" ]; then
JUDGE_FLAGS="--no-llm"
elif [ "${{ inputs.judge_mode }}" = "dual" ]; then
JUDGE_FLAGS="--dual-judge --judge-model ${{ inputs.judge_model || 'gemma3:4b' }}"
else
# llm mode
JUDGE_FLAGS="--judge-model ${{ inputs.judge_model || 'gemma3:4b' }}"
fi
echo "Judge mode: ${{ inputs.judge_mode || 'simple' }}"
echo "Judge flags: $JUDGE_FLAGS"
# Progress goes to stderr (visible), JSON results go to file
npm run --silent dev -- run --suite build --no-llm --output json > /tmp/build-results.json || true
npm run --silent dev -- run --suite build $JUDGE_FLAGS --output json > /tmp/build-results.json || true
echo "--- JSON Results ---"
cat /tmp/build-results.json

View File

@@ -3,10 +3,24 @@ name: Full Pipeline
on:
workflow_dispatch: # Manual trigger
inputs:
skip_llm_judge:
description: 'Skip LLM judge evaluation'
judge_mode:
description: 'Test judge mode'
required: false
default: 'false'
default: 'simple'
type: choice
options:
- 'simple'
- 'llm'
- 'dual'
judge_model:
description: 'LLM model for judging (if llm/dual mode)'
required: false
default: 'gemma3:4b'
type: string
skip_llm_judge_stage:
description: 'Skip separate LLM judge evaluation stage'
required: false
default: 'true'
type: choice
options:
- 'true'
@@ -19,6 +33,9 @@ jobs:
build:
name: Build Verification
uses: ./.github/workflows/build.yml
with:
judge_mode: ${{ inputs.judge_mode || 'simple' }}
judge_model: ${{ inputs.judge_model || 'gemma3:4b' }}
start-container:
name: Start Container
@@ -62,7 +79,22 @@ jobs:
id: runtime-tests
run: |
cd tests
npm run --silent dev -- run --suite runtime --no-llm --output json > /tmp/runtime-results.json || true
# Build judge flags based on input
JUDGE_FLAGS=""
if [ "${{ inputs.judge_mode }}" = "simple" ] || [ -z "${{ inputs.judge_mode }}" ]; then
JUDGE_FLAGS="--no-llm"
elif [ "${{ inputs.judge_mode }}" = "dual" ]; then
JUDGE_FLAGS="--dual-judge --judge-model ${{ inputs.judge_model || 'gemma3:4b' }}"
else
# llm mode
JUDGE_FLAGS="--judge-model ${{ inputs.judge_model || 'gemma3:4b' }}"
fi
echo "Judge mode: ${{ inputs.judge_mode || 'simple' }}"
echo "Judge flags: $JUDGE_FLAGS"
npm run --silent dev -- run --suite runtime $JUDGE_FLAGS --output json > /tmp/runtime-results.json || true
echo "--- JSON Results ---"
cat /tmp/runtime-results.json
@@ -104,7 +136,22 @@ jobs:
id: inference-tests
run: |
cd tests
npm run --silent dev -- run --suite inference --no-llm --output json > /tmp/inference-results.json || true
# Build judge flags based on input
JUDGE_FLAGS=""
if [ "${{ inputs.judge_mode }}" = "simple" ] || [ -z "${{ inputs.judge_mode }}" ]; then
JUDGE_FLAGS="--no-llm"
elif [ "${{ inputs.judge_mode }}" = "dual" ]; then
JUDGE_FLAGS="--dual-judge --judge-model ${{ inputs.judge_model || 'gemma3:4b' }}"
else
# llm mode
JUDGE_FLAGS="--judge-model ${{ inputs.judge_model || 'gemma3:4b' }}"
fi
echo "Judge mode: ${{ inputs.judge_mode || 'simple' }}"
echo "Judge flags: $JUDGE_FLAGS"
npm run --silent dev -- run --suite inference $JUDGE_FLAGS --output json > /tmp/inference-results.json || true
echo "--- JSON Results ---"
cat /tmp/inference-results.json
@@ -129,7 +176,7 @@ jobs:
name: LLM Judge Evaluation
runs-on: self-hosted
needs: [build, runtime, inference]
if: ${{ inputs.skip_llm_judge != 'true' }}
if: ${{ inputs.skip_llm_judge_stage != 'true' }}
steps:
- name: Checkout
@@ -152,7 +199,9 @@ jobs:
run: |
cd tests
echo "Running LLM judge evaluation..."
npm run --silent dev -- run --output json > /tmp/llm-judged-results.json || true
echo "Using model: ${{ inputs.judge_model || 'gemma3:4b' }}"
npm run --silent dev -- run --judge-model ${{ inputs.judge_model || 'gemma3:4b' }} --output json > /tmp/llm-judged-results.json || true
echo "--- JSON Results ---"
cat /tmp/llm-judged-results.json

View File

@@ -11,6 +11,20 @@ on:
options:
- 'true'
- 'false'
judge_mode:
description: 'Test judge mode'
required: false
default: 'simple'
type: choice
options:
- 'simple'
- 'llm'
- 'dual'
judge_model:
description: 'LLM model for judging (if llm/dual mode)'
required: false
default: 'gemma3:4b'
type: string
workflow_call: # Called by other workflows
inputs:
use_existing_container:
@@ -18,6 +32,16 @@ on:
required: false
default: false
type: boolean
judge_mode:
description: 'Test judge mode (simple, llm, dual)'
required: false
default: 'simple'
type: string
judge_model:
description: 'LLM model for judging'
required: false
default: 'gemma3:4b'
type: string
outputs:
result:
description: "Inference test result"
@@ -57,8 +81,23 @@ jobs:
id: inference-tests
run: |
cd tests
# Build judge flags based on input
JUDGE_FLAGS=""
if [ "${{ inputs.judge_mode }}" = "simple" ] || [ -z "${{ inputs.judge_mode }}" ]; then
JUDGE_FLAGS="--no-llm"
elif [ "${{ inputs.judge_mode }}" = "dual" ]; then
JUDGE_FLAGS="--dual-judge --judge-model ${{ inputs.judge_model || 'gemma3:4b' }}"
else
# llm mode
JUDGE_FLAGS="--judge-model ${{ inputs.judge_model || 'gemma3:4b' }}"
fi
echo "Judge mode: ${{ inputs.judge_mode || 'simple' }}"
echo "Judge flags: $JUDGE_FLAGS"
# Progress goes to stderr (visible), JSON results go to file
npm run --silent dev -- run --suite inference --no-llm --output json > /tmp/inference-results.json || true
npm run --silent dev -- run --suite inference $JUDGE_FLAGS --output json > /tmp/inference-results.json || true
echo "--- JSON Results ---"
cat /tmp/inference-results.json

View File

@@ -11,6 +11,20 @@ on:
options:
- 'true'
- 'false'
judge_mode:
description: 'Test judge mode'
required: false
default: 'simple'
type: choice
options:
- 'simple'
- 'llm'
- 'dual'
judge_model:
description: 'LLM model for judging (if llm/dual mode)'
required: false
default: 'gemma3:4b'
type: string
workflow_call: # Called by other workflows
inputs:
keep_container:
@@ -18,6 +32,16 @@ on:
required: false
default: false
type: boolean
judge_mode:
description: 'Test judge mode (simple, llm, dual)'
required: false
default: 'simple'
type: string
judge_model:
description: 'LLM model for judging'
required: false
default: 'gemma3:4b'
type: string
outputs:
result:
description: "Runtime test result"
@@ -53,8 +77,23 @@ jobs:
id: runtime-tests
run: |
cd tests
# Build judge flags based on input
JUDGE_FLAGS=""
if [ "${{ inputs.judge_mode }}" = "simple" ] || [ -z "${{ inputs.judge_mode }}" ]; then
JUDGE_FLAGS="--no-llm"
elif [ "${{ inputs.judge_mode }}" = "dual" ]; then
JUDGE_FLAGS="--dual-judge --judge-model ${{ inputs.judge_model || 'gemma3:4b' }}"
else
# llm mode
JUDGE_FLAGS="--judge-model ${{ inputs.judge_model || 'gemma3:4b' }}"
fi
echo "Judge mode: ${{ inputs.judge_mode || 'simple' }}"
echo "Judge flags: $JUDGE_FLAGS"
# Progress goes to stderr (visible), JSON results go to file
npm run --silent dev -- run --suite runtime --no-llm --output json > /tmp/runtime-results.json || true
npm run --silent dev -- run --suite runtime $JUDGE_FLAGS --output json > /tmp/runtime-results.json || true
echo "--- JSON Results ---"
cat /tmp/runtime-results.json

View File

@@ -25,6 +25,84 @@ steps:
| jq -r '.response' | head -c 100
timeout: 300000
- name: Verify model loading in logs
command: |
cd docker
LOGS=$(docker compose logs 2>&1)
echo "=== Model Loading Check ==="
# Check for model loading message
if echo "$LOGS" | grep -q 'msg="loading model"'; then
echo "SUCCESS: Model loading initiated"
echo "$LOGS" | grep 'msg="loading model"' | tail -1
else
echo "WARNING: Model loading message not found"
fi
# Check for layer offloading to GPU
if echo "$LOGS" | grep -q "offloaded.*layers to GPU"; then
echo "SUCCESS: Model layers offloaded to GPU"
echo "$LOGS" | grep "offloaded.*layers to GPU" | tail -1
else
echo "ERROR: Model layers not offloaded to GPU"
exit 1
fi
# Check model weights loaded
if echo "$LOGS" | grep -q 'msg="model weights loaded successfully"'; then
echo "SUCCESS: Model weights loaded"
else
echo "WARNING: Model weights loaded message not found"
fi
- name: Verify llama runner started
command: |
cd docker
LOGS=$(docker compose logs 2>&1)
echo "=== Llama Runner Check ==="
# Check llama runner started
if echo "$LOGS" | grep -q "llama runner started"; then
echo "SUCCESS: Llama runner started"
echo "$LOGS" | grep "llama runner started" | tail -1
else
echo "ERROR: Llama runner not started"
exit 1
fi
- name: Check for model loading errors
command: |
cd docker
LOGS=$(docker compose logs 2>&1)
echo "=== Model Loading Error Check ==="
# Check for CUDA/CUBLAS errors during model load
if echo "$LOGS" | grep -qE "(CUBLAS_STATUS_|CUDA error|cudaMalloc failed)"; then
echo "CRITICAL CUDA ERRORS during model load:"
echo "$LOGS" | grep -E "(CUBLAS_STATUS_|CUDA error|cudaMalloc failed)"
exit 1
fi
# Check for out of memory
if echo "$LOGS" | grep -qi "out of memory"; then
echo "ERROR: Out of memory during model load"
echo "$LOGS" | grep -i "out of memory"
exit 1
fi
echo "SUCCESS: No model loading errors"
- name: Display model memory allocation from logs
command: |
cd docker
LOGS=$(docker compose logs 2>&1)
echo "=== Model Memory Allocation ==="
echo "$LOGS" | grep -E '(model weights|kv cache|compute graph|total memory).*device=' | tail -8
criteria: |
The gemma3:4b model should be available for inference.
@@ -32,8 +110,11 @@ criteria: |
- Model is either already present or successfully downloaded
- "ollama list" shows gemma3:4b in the output
- No download errors
- Warmup step loads model into GPU memory (may take up to 3 minutes on Tesla K80)
- Warmup returns a response from the model
- Logs show "offloaded X/Y layers to GPU"
- Logs show "llama runner started"
- Logs show model weights on CUDA device (not CPU only)
- NO CUBLAS_STATUS_ errors during model load
- NO out of memory errors
Accept if model already exists (skip download).
Model size is ~3GB, download may take time.

View File

@@ -15,6 +15,66 @@ steps:
- name: Check GPU memory usage
command: docker exec ollama37 nvidia-smi --query-compute-apps=pid,used_memory --format=csv 2>/dev/null || echo "No GPU processes"
- name: Check for inference errors in logs
command: |
cd docker
LOGS=$(docker compose logs --since=5m 2>&1)
echo "=== Inference Error Check ==="
# Check for CUBLAS errors (critical for K80)
if echo "$LOGS" | grep -qE "CUBLAS_STATUS_"; then
echo "CRITICAL: CUBLAS error during inference:"
echo "$LOGS" | grep -E "CUBLAS_STATUS_"
exit 1
fi
# Check for CUDA errors
if echo "$LOGS" | grep -qE "CUDA error"; then
echo "CRITICAL: CUDA error during inference:"
echo "$LOGS" | grep -E "CUDA error"
exit 1
fi
# Check for compute graph errors
if echo "$LOGS" | grep -qiE "(compute.*failed|graph.*error)"; then
echo "ERROR: Compute graph error:"
echo "$LOGS" | grep -iE "(compute.*failed|graph.*error)"
exit 1
fi
echo "SUCCESS: No inference errors in logs"
- name: Verify inference request in logs
command: |
cd docker
LOGS=$(docker compose logs --since=5m 2>&1)
echo "=== Inference Request Verification ==="
# Check for generate API call
if echo "$LOGS" | grep -qE '\[GIN\].*POST.*/api/generate'; then
echo "SUCCESS: Generate API request logged"
echo "$LOGS" | grep -E '\[GIN\].*POST.*/api/generate' | tail -2
else
echo "WARNING: Generate API request not found in recent logs"
fi
# Check for successful response (200 status)
if echo "$LOGS" | grep -qE '\[GIN\].*200.*POST'; then
echo "SUCCESS: Inference returned 200 status"
else
echo "WARNING: Could not verify 200 status"
fi
- name: Display recent CUDA activity from logs
command: |
cd docker
LOGS=$(docker compose logs --since=5m 2>&1)
echo "=== Recent CUDA Activity ==="
echo "$LOGS" | grep -iE "(CUDA|cuda|device=CUDA)" | tail -5 || echo "No recent CUDA activity logged"
criteria: |
Basic inference should work on Tesla K80.
@@ -22,7 +82,9 @@ criteria: |
- Model responds to the math question
- Response should indicate "4" (accept variations: "4", "four", "The answer is 4", etc.)
- GPU memory should be allocated during inference
- No CUDA errors in output
- NO CUBLAS_STATUS_ errors in logs (critical for K80 compatibility)
- NO CUDA error messages in logs
- Generate API request logged with 200 status
This is AI-generated output - accept reasonable variations.
Focus on the model producing a coherent response.
Focus on the model producing a coherent response without GPU errors.

View File

@@ -20,6 +20,65 @@ steps:
-d '{"model":"gemma3:4b","prompt":"Count from 1 to 3","stream":true}' \
| head -5
- name: Verify API requests logged successfully
command: |
cd docker
LOGS=$(docker compose logs --since=5m 2>&1)
echo "=== API Request Log Verification ==="
# Check for generate requests with 200 status
GENERATE_200=$(echo "$LOGS" | grep -c '\[GIN\].*200.*POST.*/api/generate' || echo "0")
echo "Generate requests with 200 status: $GENERATE_200"
if [ "$GENERATE_200" -gt 0 ]; then
echo "SUCCESS: API generate requests completed successfully"
echo "$LOGS" | grep '\[GIN\].*POST.*/api/generate' | tail -3
else
echo "WARNING: No successful generate requests found in recent logs"
fi
- name: Check for API errors in logs
command: |
cd docker
LOGS=$(docker compose logs --since=5m 2>&1)
echo "=== API Error Check ==="
# Check for 4xx/5xx errors on generate endpoint
if echo "$LOGS" | grep -qE '\[GIN\].*(4[0-9]{2}|5[0-9]{2}).*POST.*/api/generate'; then
echo "WARNING: API errors found on generate endpoint:"
echo "$LOGS" | grep -E '\[GIN\].*(4[0-9]{2}|5[0-9]{2}).*POST.*/api/generate' | tail -3
else
echo "SUCCESS: No API errors on generate endpoint"
fi
# Check for any CUDA errors during API processing
if echo "$LOGS" | grep -qE "(CUBLAS_STATUS_|CUDA error)"; then
echo "CRITICAL: CUDA errors during API processing:"
echo "$LOGS" | grep -E "(CUBLAS_STATUS_|CUDA error)"
exit 1
fi
echo "SUCCESS: No critical errors during API processing"
- name: Display API response times from logs
command: |
cd docker
LOGS=$(docker compose logs --since=5m 2>&1)
echo "=== API Response Times ==="
# Show recent generate request response times
echo "$LOGS" | grep -E '\[GIN\].*POST.*/api/generate' | tail -5 | while read line; do
# Extract response time from GIN log format
echo "$line" | grep -oE '[0-9]+(\.[0-9]+)?(ms|s|m)' | head -1
done
echo ""
echo "Recent API requests:"
echo "$LOGS" | grep '\[GIN\]' | tail -5
criteria: |
Ollama REST API should handle inference requests.
@@ -31,4 +90,9 @@ criteria: |
- Returns multiple JSON lines
- Each line contains partial response
Log verification:
- Generate API requests logged with 200 status
- NO 4xx/5xx errors on generate endpoint
- NO CUDA/CUBLAS errors during API processing
Accept any valid JSON response. Content may vary.

View File

@@ -20,6 +20,30 @@ steps:
- name: Check container status
command: cd docker && docker compose ps
- name: Capture startup logs
command: |
cd docker && docker compose logs 2>&1 | head -100
- name: Check for startup errors in logs
command: |
cd docker
LOGS=$(docker compose logs 2>&1)
# Check for critical errors
if echo "$LOGS" | grep -qE "(level=ERROR|CUBLAS_STATUS_|CUDA error|cudaMalloc failed)"; then
echo "CRITICAL ERRORS FOUND IN STARTUP LOGS:"
echo "$LOGS" | grep -E "(level=ERROR|CUBLAS_STATUS_|CUDA error|cudaMalloc failed)"
exit 1
fi
# Check for CPU-only fallback (GPU not detected)
if echo "$LOGS" | grep -q "id=cpu library=cpu"; then
echo "ERROR: Ollama fell back to CPU-only mode"
exit 1
fi
echo "SUCCESS: No critical errors in startup logs"
criteria: |
The ollama37 container should start successfully with GPU access.
@@ -27,5 +51,7 @@ criteria: |
- Container starts without errors
- docker compose ps shows container in "Up" state
- No "Exited" or "Restarting" status
- No critical errors in logs (level=ERROR, CUBLAS_STATUS_, CUDA error)
- No CPU-only fallback (id=cpu library=cpu)
Accept startup warnings. Container should be running.
Accept startup warnings (flash attention not supported is OK). Container should be running.

View File

@@ -28,9 +28,90 @@ steps:
ls -l /dev/nvidia-uvm
fi
- name: Check Ollama GPU detection in logs
- name: Verify GPU detection in Ollama logs
command: |
cd docker && docker compose logs 2>&1 | grep -E "(inference compute|GPU detected)" | tail -5
cd docker
LOGS=$(docker compose logs 2>&1)
echo "=== GPU Detection Check ==="
# Check for inference compute with CUDA library
if echo "$LOGS" | grep -q "inference compute.*library=CUDA"; then
echo "SUCCESS: GPU detected with CUDA library"
echo "$LOGS" | grep "inference compute" | head -2
else
echo "ERROR: GPU not detected with CUDA library"
exit 1
fi
# Check for Tesla K80 specifically
if echo "$LOGS" | grep -q 'description="Tesla K80"'; then
echo "SUCCESS: Tesla K80 GPU identified"
else
echo "WARNING: Tesla K80 not explicitly identified"
fi
# Check compute capability 3.7
if echo "$LOGS" | grep -q "compute=3.7"; then
echo "SUCCESS: Compute capability 3.7 detected"
else
echo "WARNING: Compute capability 3.7 not detected"
fi
- name: Verify CUDA initialization in logs
command: |
cd docker
LOGS=$(docker compose logs 2>&1)
echo "=== CUDA Initialization Check ==="
# Check ggml_cuda_init
if echo "$LOGS" | grep -q "ggml_cuda_init: found"; then
echo "SUCCESS: CUDA initialized"
echo "$LOGS" | grep "ggml_cuda_init: found" | head -1
else
echo "ERROR: CUDA not initialized"
exit 1
fi
# Check CUDA backend loaded
if echo "$LOGS" | grep -q "load_backend: loaded CUDA backend"; then
echo "SUCCESS: CUDA backend loaded"
echo "$LOGS" | grep "load_backend: loaded CUDA backend" | head -1
else
echo "ERROR: CUDA backend not loaded"
exit 1
fi
- name: Check for GPU-related errors in logs
command: |
cd docker
LOGS=$(docker compose logs 2>&1)
echo "=== GPU Error Check ==="
# Check for critical CUDA/CUBLAS errors
if echo "$LOGS" | grep -qE "(CUBLAS_STATUS_|CUDA error|cudaMalloc failed|out of memory)"; then
echo "CRITICAL GPU ERRORS FOUND:"
echo "$LOGS" | grep -E "(CUBLAS_STATUS_|CUDA error|cudaMalloc failed|out of memory)"
exit 1
fi
# Check for CPU fallback (bad!)
if echo "$LOGS" | grep -q "id=cpu library=cpu"; then
echo "ERROR: Ollama fell back to CPU-only mode"
exit 1
fi
echo "SUCCESS: No GPU-related errors found"
- name: Display GPU memory status from logs
command: |
cd docker
LOGS=$(docker compose logs 2>&1)
echo "=== GPU Memory Status ==="
echo "$LOGS" | grep -E "gpu memory.*library=CUDA" | tail -4
criteria: |
Tesla K80 GPU should be detected by both nvidia-smi AND Ollama CUDA runtime.
@@ -39,7 +120,12 @@ criteria: |
- nvidia-smi shows Tesla K80 GPU(s) with Driver 470.x
- CUDA libraries are available (libcuda, libcublas, etc.)
- /dev/nvidia-uvm device file exists (required for CUDA runtime)
- Ollama logs show GPU detection, NOT "id=cpu library=cpu"
- Ollama logs show "inference compute" with "library=CUDA"
- Ollama logs show "ggml_cuda_init: found N CUDA devices"
- Ollama logs show "load_backend: loaded CUDA backend"
- NO "id=cpu library=cpu" (CPU fallback)
- NO CUBLAS_STATUS_ errors
- NO CUDA error messages
NOTE: If nvidia-smi works but Ollama shows only CPU, the UVM device
files are missing. The test will auto-fix with nvidia-modprobe -u -c=0.

View File

@@ -28,6 +28,62 @@ steps:
- name: Check Ollama version
command: docker exec ollama37 ollama --version
- name: Verify server listening in logs
command: |
cd docker
LOGS=$(docker compose logs 2>&1)
echo "=== Server Status Check ==="
# Check server is listening
if echo "$LOGS" | grep -q "Listening on"; then
echo "SUCCESS: Server is listening"
echo "$LOGS" | grep "Listening on" | head -1
else
echo "ERROR: Server not listening"
exit 1
fi
- name: Check for runtime errors in logs
command: |
cd docker
LOGS=$(docker compose logs 2>&1)
echo "=== Runtime Error Check ==="
# Check for any ERROR level logs
ERROR_COUNT=$(echo "$LOGS" | grep -c "level=ERROR" || echo "0")
if [ "$ERROR_COUNT" -gt 0 ]; then
echo "WARNING: Found $ERROR_COUNT ERROR level log entries:"
echo "$LOGS" | grep "level=ERROR" | tail -5
else
echo "SUCCESS: No ERROR level logs found"
fi
# Check for panic/fatal
if echo "$LOGS" | grep -qiE "(panic|fatal)"; then
echo "CRITICAL: Panic or fatal error detected:"
echo "$LOGS" | grep -iE "(panic|fatal)"
exit 1
fi
echo "SUCCESS: No critical runtime errors"
- name: Verify API request handling in logs
command: |
cd docker
LOGS=$(docker compose logs 2>&1)
echo "=== API Request Logs ==="
# Check that API requests are being logged (GIN framework)
if echo "$LOGS" | grep -q '\[GIN\].*200.*GET.*"/api/tags"'; then
echo "SUCCESS: API requests are being handled"
echo "$LOGS" | grep '\[GIN\].*"/api/tags"' | tail -3
else
echo "WARNING: No API request logs found (might be first request)"
fi
criteria: |
Ollama server should be healthy and API responsive.
@@ -35,5 +91,8 @@ criteria: |
- Container health status becomes "healthy"
- /api/tags endpoint returns JSON response (even if empty models)
- ollama --version shows version information
- Logs show "Listening on" message
- No panic or fatal errors in logs
- API requests logged with 200 status codes
Accept any valid JSON response from API. Version format may vary.