move to contained directory

This commit is contained in:
Bruce MacDonald
2023-06-27 12:08:52 -04:00
parent 41419f7577
commit 1fcf31b8c4
7 changed files with 279 additions and 177 deletions

19
ollama/build.py Normal file
View File

@@ -0,0 +1,19 @@
import site
import os
from PyInstaller.__main__ import run as pyi_run
# the llama_cpp directory is not included if not explicitly added
site_packages_dir = site.getsitepackages()[0]
llama_cpp_dir = os.path.join(site_packages_dir, "llama_cpp")
args = [
"ollama.py",
"--paths",
site_packages_dir,
"--add-data",
f"{llama_cpp_dir}{os.pathsep}llama_cpp",
"--onefile"
]
# generate the .spec file and run PyInstaller
pyi_run(args)

12
ollama/model_prompts.json Normal file
View File

@@ -0,0 +1,12 @@
{
"alpaca": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:\n\n",
"ggml": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n### Human: Hello, Assistant.\n### Assistant: Hello. How may I help you today?\n### Human: ${prompt}",
"gpt4": "### Instruction:\n{prompt}\n\n### Response:\n",
"hermes": "### Instruction:\n{prompt}\n\n### Response:\n",
"oasst": "{prompt}",
"orca": "### System:\nYou are an AI assistant that follows instruction extremely well. Help as much as you can.\n\n### User:\n{prompt}\n\n### Response:",
"qlora": "### Human: {prompt}\n### Assistant:",
"tulu": "\n{prompt}\n\n(include newline)",
"vicuna": "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n\nUSER: {prompt}\nASSISTANT:",
"wizardlm": "{prompt}\n\n### Response:"
}

223
ollama/ollama.py Normal file
View File

@@ -0,0 +1,223 @@
import json
import os
import threading
import click
from transformers import AutoModel
from tqdm import tqdm
from pathlib import Path
from llama_cpp import Llama
from flask import Flask, Response, stream_with_context, request
from flask_cors import CORS
from template import template
app = Flask(__name__)
CORS(app) # enable CORS for all routes
# llms tracks which models are loaded
llms = {}
lock = threading.Lock()
def models_directory():
home_dir = Path.home()
models_dir = home_dir / ".ollama/models"
if not models_dir.exists():
models_dir.mkdir(parents=True)
return models_dir
def load(model=None, path=None):
"""
Load a model.
The model can be specified by providing either the path or the model name,
but not both. If both are provided, this function will raise a ValueError.
If the model does not exist or could not be loaded, this function returns an error.
Args:
model (str, optional): The name of the model to load.
path (str, optional): The path to the model file.
Returns:
dict or None: If the model cannot be loaded, a dictionary with an 'error' key is returned.
If the model is successfully loaded, None is returned.
"""
with lock:
if path is not None and model is not None:
raise ValueError(
"Both path and model are specified. Please provide only one of them."
)
elif path is not None:
name = os.path.basename(path)
load_from = path
elif model is not None:
name = model
dir = models_directory()
load_from = str(dir / f"{model}.bin")
else:
raise ValueError("Either path or model must be specified.")
if not os.path.exists(load_from):
return {"error": f"The model at {load_from} does not exist."}
if name not in llms:
# TODO: download model from a repository if it does not exist
llms[name] = Llama(model_path=load_from)
# TODO: this should start a persistent instance of ollama with the model loaded
return None
def unload(model):
"""
Unload a model.
Remove a model from the list of loaded models. If the model is not loaded, this is a no-op.
Args:
model (str): The name of the model to unload.
"""
llms.pop(model, None)
def generate(model, prompt):
# auto load
error = load(model)
print(error)
if error is not None:
return error
generated = llms[model](
str(prompt), # TODO: optimize prompt based on model
max_tokens=4096,
stop=["Q:", "\n"],
stream=True,
)
for output in generated:
yield json.dumps(output)
def models():
dir = models_directory()
all_files = os.listdir(dir)
bin_files = [
file.replace(".bin", "") for file in all_files if file.endswith(".bin")
]
return bin_files
@app.route("/load", methods=["POST"])
def load_route_handler():
data = request.get_json()
model = data.get("model")
if not model:
return Response("Model is required", status=400)
error = load(model)
if error is not None:
return error
return Response(status=204)
@app.route("/unload", methods=["POST"])
def unload_route_handler():
data = request.get_json()
model = data.get("model")
if not model:
return Response("Model is required", status=400)
unload(model)
return Response(status=204)
@app.route("/generate", methods=["POST"])
def generate_route_handler():
data = request.get_json()
model = data.get("model")
prompt = data.get("prompt")
if not model:
return Response("Model is required", status=400)
if not prompt:
return Response("Prompt is required", status=400)
if not os.path.exists(f"{model}"):
return {"error": "The model does not exist."}, 400
return Response(
stream_with_context(generate(model, prompt)), mimetype="text/event-stream"
)
@app.route("/models", methods=["GET"])
def models_route_handler():
bin_files = models()
return Response(json.dumps(bin_files), mimetype="application/json")
@click.group(invoke_without_command=True)
@click.pass_context
def cli(ctx):
# allows the script to respond to command line input when executed directly
if ctx.invoked_subcommand is None:
click.echo(ctx.get_help())
@cli.command()
@click.option("--port", default=5000, help="Port to run the server on")
@click.option("--debug", default=False, help="Enable debug mode")
def serve(port, debug):
print("Serving on http://localhost:{port}")
app.run(host="0.0.0.0", port=port, debug=debug)
@cli.command(name="load")
@click.argument("model")
@click.option("--file", default=False, help="Indicates that a file path is provided")
def load_cli(model, file):
if file:
error = load(path=model)
else:
error = load(model)
if error is not None:
print(error)
return
print("Model loaded")
@cli.command(name="generate")
@click.argument("model")
@click.option("--prompt", default="", help="The prompt for the model")
def generate_cli(model, prompt):
if prompt == "":
prompt = input("Prompt: ")
output = ""
prompt = template(model, prompt)
for generated in generate(model, prompt):
generated_json = json.loads(generated)
text = generated_json["choices"][0]["text"]
output += text
print(f"\r{output}", end="", flush=True)
def download_model(model_name):
dir = models_directory()
AutoModel.from_pretrained(model_name, cache_dir=dir)
@cli.command(name="models")
def models_cli():
print(models())
@cli.command(name="pull")
@click.argument("model")
def pull_cli(model):
print("not implemented")
@cli.command(name="import")
@click.argument("model")
def import_cli(model):
print("not implemented")
if __name__ == "__main__":
cli()

5
ollama/requirements.txt Normal file
View File

@@ -0,0 +1,5 @@
Flask==2.3.2
flask_cors==3.0.10
llama-cpp-python==0.1.65
pyinstaller==5.13.0
pyinstaller-hooks-contrib==2023.3

20
ollama/template.py Normal file
View File

@@ -0,0 +1,20 @@
from difflib import SequenceMatcher
import json
with open("model_prompts.json", "r") as f:
model_prompts = json.load(f)
def template(model, prompt):
max_ratio = 0
closest_key = ""
model_name = model.lower()
# Find the specialized prompt with the closest name match
for key in model_prompts.keys():
ratio = SequenceMatcher(None, model_name, key).ratio()
if ratio > max_ratio:
max_ratio = ratio
closest_key = key
# Return the value of the closest match
p = model_prompts.get(closest_key) # TODO: provide a better default template
return p.format(prompt=prompt)