mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-11 08:17:03 +00:00
chore: update mllama to use ollama engine (#10637)
This commit is contained in:
@@ -2,11 +2,7 @@ package mllama
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"hash/fnv"
|
||||
"image"
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
@@ -34,10 +30,6 @@ const (
|
||||
)
|
||||
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
// Verify unified config
|
||||
if c.Uint("vision.block_count") == 0 {
|
||||
return nil, fmt.Errorf("non-unified vision model not supported")
|
||||
}
|
||||
m := Model{
|
||||
BytePairEncoding: model.NewBytePairEncoding(
|
||||
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
||||
@@ -76,22 +68,19 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
|
||||
return nil, err
|
||||
}
|
||||
|
||||
f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(image)
|
||||
f32s, ratio, err := m.ImageProcessor.ProcessImage(image)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
|
||||
m.ImageProcessor.imageSize,
|
||||
m.ImageProcessor.imageSize,
|
||||
m.ImageProcessor.numChannels,
|
||||
m.ImageProcessor.maxNumTiles,
|
||||
)
|
||||
pixelValues, err := ctx.Input().FromFloatSlice(f32s, m.imageSize, m.imageSize, m.numChannels, ratio.numTiles())
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
aspectRatio, err := ctx.Input().FromIntSlice([]int32{int32(aspectRatioID)}, 1)
|
||||
pixelValues = pixelValues.Pad(ctx, 0, 0, 0, m.ImageProcessor.maxNumTiles-ratio.numTiles())
|
||||
|
||||
aspectRatio, err := ctx.Input().FromIntSlice([]int32{int32(ratio.rank)}, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -102,41 +91,19 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
|
||||
}
|
||||
|
||||
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
var images []input.Input
|
||||
fnvHash := fnv.New64a()
|
||||
|
||||
for i := range inputs {
|
||||
if inputs[i].Multimodal == nil {
|
||||
if len(images) > 0 {
|
||||
inputs[i].Multimodal = []ml.Tensor{images[0].Multimodal.(ml.Tensor)}
|
||||
inputs[i].MultimodalHash = images[0].MultimodalHash
|
||||
for j := 1; j < len(images); j++ {
|
||||
inputs[i].Multimodal = append(inputs[i].Multimodal.([]ml.Tensor), images[0].Multimodal.(ml.Tensor))
|
||||
fnvHash.Reset()
|
||||
binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
|
||||
binary.Write(fnvHash, binary.NativeEndian, inputs[j].MultimodalHash)
|
||||
inputs[i].MultimodalHash = fnvHash.Sum64()
|
||||
}
|
||||
images = nil
|
||||
}
|
||||
} else {
|
||||
images = append(images, inputs[i])
|
||||
inputs[i].Token = -1
|
||||
if inputs[i].Multimodal != nil {
|
||||
inputs[i].Token = 128256 // <|image|>
|
||||
}
|
||||
}
|
||||
|
||||
inputs = slices.DeleteFunc(inputs, func(input input.Input) bool { return input.Token == -1 })
|
||||
|
||||
return inputs, nil
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
var crossAttentionStates ml.Tensor
|
||||
if len(batch.Multimodal) > 0 {
|
||||
images := batch.Multimodal[len(batch.Multimodal)-1].Multimodal.([]ml.Tensor)
|
||||
if len(images) > 0 {
|
||||
crossAttentionStates = images[len(images)-1]
|
||||
}
|
||||
crossAttentionStates = batch.Multimodal[len(batch.Multimodal)-1].Multimodal.(ml.Tensor)
|
||||
}
|
||||
|
||||
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
@@ -150,7 +117,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
}
|
||||
|
||||
// TODO: attention mask, cross attention mask
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
|
||||
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
|
||||
Reference in New Issue
Block a user