chore: update mllama to use ollama engine (#10637)

This commit is contained in:
Michael Yang
2025-05-13 17:36:02 -07:00
committed by GitHub
parent 0478d440f0
commit 23125648b8
67 changed files with 785 additions and 4354 deletions

View File

@@ -2,17 +2,31 @@ package mllama
import (
"image"
"image/color"
"math"
"slices"
"golang.org/x/image/draw"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/model/imageproc"
)
type supportedAspectRatio struct {
rank, width, height int
}
func (a supportedAspectRatio) Point() image.Point {
return image.Point{a.width, a.height}
}
func (a supportedAspectRatio) numTiles() int {
return a.width * a.height
}
type ImageProcessor struct {
imageSize, numChannels, maxNumTiles int
mean, std [3]float32
}
func newImageProcessor(c fs.Config) ImageProcessor {
@@ -20,71 +34,49 @@ func newImageProcessor(c fs.Config) ImageProcessor {
imageSize: int(c.Uint("vision.image_size")),
numChannels: int(c.Uint("vision.num_channels")),
maxNumTiles: int(c.Uint("vision.max_num_tiles")),
mean: imageproc.ClipDefaultMean,
std: imageproc.ClipDefaultSTD,
}
}
func (p *ImageProcessor) supportedAspectRatios(maxTiles int) []image.Point {
ratios := []image.Point{}
for w := range maxTiles {
for h := range maxTiles {
if (w+1)*(h+1) <= maxTiles {
ratios = append(ratios, image.Point{w + 1, h + 1})
}
func (p ImageProcessor) supportedAspectRatios() (ratios []supportedAspectRatio) {
for w := 1; w <= p.maxNumTiles; w++ {
for h := 1; h <= p.maxNumTiles/w; h++ {
ratios = append(ratios, supportedAspectRatio{len(ratios) + 1, w, h})
}
}
return ratios
}
func (p *ImageProcessor) clip(a, a_min, a_max int) int {
if a < a_min {
return a_min
} else if a > a_max {
return a_max
}
func (p ImageProcessor) fitToCanvas(imageSize, canvasSize image.Point) image.Point {
tw := min(max(imageSize.X, p.imageSize), canvasSize.X)
th := min(max(imageSize.Y, p.imageSize), canvasSize.Y)
return a
}
r := math.Min(
float64(tw)/float64(imageSize.X),
float64(th)/float64(imageSize.Y),
)
func (p *ImageProcessor) fitToCanvas(imageSize, canvasSize image.Point, tileSize int) image.Point {
targetWidth := p.clip(imageSize.X, tileSize, canvasSize.X)
targetHeight := p.clip(imageSize.Y, tileSize, canvasSize.Y)
scaleWidth := float64(targetWidth) / float64(imageSize.X)
scaleHeight := float64(targetHeight) / float64(imageSize.Y)
var w, h int
if scaleWidth < scaleHeight {
w = targetWidth
h = min(int(math.Floor(float64(imageSize.Y)*scaleWidth)), targetHeight)
} else {
w = min(int(math.Floor(float64(imageSize.X)*scaleHeight)), targetWidth)
h = targetHeight
}
w := min(int(math.Floor(float64(imageSize.X)*r)), tw)
h := min(int(math.Floor(float64(imageSize.Y)*r)), th)
return image.Point{w, h}
}
func (p *ImageProcessor) optimalTiledCanvas(imageSize image.Point, maxImageTiles, tileSize int) image.Point {
possibleTileArrangements := p.supportedAspectRatios(maxImageTiles)
possibleCanvasSizes := []image.Point{}
for _, pta := range possibleTileArrangements {
possibleCanvasSizes = append(possibleCanvasSizes, image.Point{pta.X * tileSize, pta.Y * tileSize})
func (p ImageProcessor) optimalTiledCanvas(imageSize image.Point) image.Point {
possibleTileArrangements := p.supportedAspectRatios()
possibleCanvasSizes := make([]image.Point, len(possibleTileArrangements))
for i, pta := range possibleTileArrangements {
possibleCanvasSizes[i] = image.Point{pta.width * p.imageSize, pta.height * p.imageSize}
}
scales := []float64{}
for _, pcs := range possibleCanvasSizes {
scaleHeight := float64(pcs.Y) / float64(imageSize.Y)
scaleWidth := float64(pcs.X) / float64(imageSize.X)
if scaleWidth > scaleHeight {
scales = append(scales, scaleHeight)
} else {
scales = append(scales, scaleWidth)
}
scales := make([]float64, len(possibleCanvasSizes))
for i, pcs := range possibleCanvasSizes {
scales[i] = min(
float64(pcs.Y)/float64(imageSize.Y),
float64(pcs.X)/float64(imageSize.X),
)
}
var minUpscale float64
@@ -123,47 +115,41 @@ func (p *ImageProcessor) optimalTiledCanvas(imageSize image.Point, maxImageTiles
return selectedCanvas
}
func (p *ImageProcessor) splitToTiles(img image.Image, numTilesSize image.Point) []image.Image {
func (p ImageProcessor) splitToTiles(img image.Image, numTilesSize image.Point) []image.Image {
b := img.Bounds()
width := b.Max.X - b.Min.X
height := b.Max.Y - b.Min.Y
tileHeight := height / numTilesSize.Y
tileWidth := width / numTilesSize.X
images := []image.Image{}
images := make([]image.Image, 0, numTilesSize.Y*numTilesSize.X)
for h := range numTilesSize.Y {
for w := range numTilesSize.X {
rect := image.Rect(tileWidth*w, tileHeight*h, tileWidth*(w+1), tileHeight*(h+1))
images = append(images, img.(interface {
if subImg, ok := img.(interface {
SubImage(image.Rectangle) image.Image
}).SubImage(rect))
}); ok {
images = append(images, subImg.SubImage(rect))
} else {
// Handle the case where img does not implement SubImage
// This is a fallback and may not be efficient
newImg := image.NewRGBA(rect)
draw.Draw(newImg, rect, img, rect.Min, draw.Src)
images = append(images, newImg)
}
}
}
return images
}
// remove the "alpha" channel by drawing over a prefilled image
//
//nolint:unused
func (p *ImageProcessor) compositeImage(img image.Image) image.Image {
dst := image.NewRGBA(img.Bounds())
white := color.RGBA{255, 255, 255, 255}
draw.Draw(dst, dst.Bounds(), &image.Uniform{white}, image.Point{}, draw.Src)
draw.Draw(dst, dst.Bounds(), img, img.Bounds().Min, draw.Over)
return dst
}
func (p *ImageProcessor) resize(img image.Image, outputSize image.Point, maxImageTiles int) (image.Image, image.Point) {
func (p ImageProcessor) resize(img image.Image) (image.Image, image.Point) {
b := img.Bounds()
tileSize := outputSize.Y
canvasSize := p.optimalTiledCanvas(b.Max, maxImageTiles, tileSize)
aspectRatio := image.Point{canvasSize.X / tileSize, canvasSize.Y / tileSize}
newSize := p.fitToCanvas(b.Max, canvasSize, tileSize)
canvasSize := p.optimalTiledCanvas(b.Max)
aspectRatio := image.Point{canvasSize.X / p.imageSize, canvasSize.Y / p.imageSize}
newSize := p.fitToCanvas(b.Max, canvasSize)
dst := image.NewRGBA(image.Rect(0, 0, newSize.X, newSize.Y))
@@ -177,10 +163,10 @@ func (p *ImageProcessor) resize(img image.Image, outputSize image.Point, maxImag
return dst, aspectRatio
}
func (p *ImageProcessor) pad(img image.Image, outputSize, aspectRatio image.Point) image.Image {
func (p ImageProcessor) pad(img image.Image, aspectRatio image.Point) image.Image {
paddedSize := image.Point{
X: outputSize.X * aspectRatio.X,
Y: outputSize.Y * aspectRatio.Y,
X: p.imageSize * aspectRatio.X,
Y: p.imageSize * aspectRatio.Y,
}
dst := image.NewRGBA(image.Rect(0, 0, paddedSize.X, paddedSize.Y))
@@ -189,7 +175,7 @@ func (p *ImageProcessor) pad(img image.Image, outputSize, aspectRatio image.Poin
return dst
}
func (p *ImageProcessor) pack(img image.Image, aspectRatio image.Point, mean, std [3]float32) []float32 {
func (p ImageProcessor) pack(img image.Image, aspectRatio image.Point) []float32 {
subImages := p.splitToTiles(img, aspectRatio)
var pixelVals []float32
@@ -205,9 +191,9 @@ func (p *ImageProcessor) pack(img image.Image, aspectRatio image.Point, mean, st
gVal := float32(g>>8) / 255.0
bVal := float32(b>>8) / 255.0
rVal = (rVal - mean[0]) / std[0]
gVal = (gVal - mean[1]) / std[1]
bVal = (bVal - mean[2]) / std[2]
rVal = (rVal - p.mean[0]) / p.std[0]
gVal = (gVal - p.mean[1]) / p.std[1]
bVal = (bVal - p.mean[2]) / p.std[2]
rVals = append(rVals, rVal)
gVals = append(gVals, gVal)
@@ -222,17 +208,15 @@ func (p *ImageProcessor) pack(img image.Image, aspectRatio image.Point, mean, st
return pixelVals
}
func (p ImageProcessor) ProcessImage(img image.Image) ([]float32, int, error) {
outputSize := image.Point{p.imageSize, p.imageSize}
func (p ImageProcessor) ProcessImage(img image.Image) ([]float32, supportedAspectRatio, error) {
newImage, newImageRatio := p.resize(img)
newImage = p.pad(newImage, newImageRatio)
pixelValues := p.pack(newImage, newImageRatio)
// clip values
mean := [3]float32{0.48145466, 0.4578275, 0.40821073}
std := [3]float32{0.26862954, 0.26130258, 0.27577711}
supportedAspectRatios := p.supportedAspectRatios()
aspectRatioID := slices.IndexFunc(supportedAspectRatios, func(i supportedAspectRatio) bool {
return i.width == newImageRatio.X && i.height == newImageRatio.Y
})
newImage, aspectRatio := p.resize(img, outputSize, p.maxNumTiles)
newImage = p.pad(newImage, outputSize, aspectRatio)
data := p.pack(newImage, aspectRatio, mean, std)
aspectRatioIndex := slices.Index(p.supportedAspectRatios(p.maxNumTiles), aspectRatio) + 1
return data, aspectRatioIndex, nil
return pixelValues, supportedAspectRatios[aspectRatioID], nil
}