ollamarunner: Use a separate context per multimodal input

Currently there is a single context per sequence, shared all by
all multimodal inputs. Since we build a vision encoder graph per
image, with a large number of inputs we can eventually hit the
maximum number of graph nodes per context.

This changes to use a separate context for each image, ensuring
that available resource limits are consistent.
This commit is contained in:
Jesse Gross
2025-03-13 20:32:50 -07:00
committed by Jesse Gross
parent 9679f40146
commit 282bfaaa95
4 changed files with 33 additions and 19 deletions

View File

@@ -34,10 +34,14 @@ import (
_ "github.com/ollama/ollama/model/models"
)
type contextList struct {
list []ml.Context
}
type Sequence struct {
// ctx for allocating tensors that last the lifetime of the sequence, such as
// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
// multimodal embeddings
ctx ml.Context
ctxs *contextList
// batch index
iBatch int
@@ -99,9 +103,8 @@ func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSe
s.ready.Wait()
startTime := time.Now()
ctx := s.model.Backend().NewContext()
inputs, err := s.inputs(ctx, prompt, images)
inputs, ctxs, err := s.inputs(prompt, images)
if err != nil {
return nil, fmt.Errorf("failed to process inputs: %w", err)
} else if len(inputs) == 0 {
@@ -127,7 +130,7 @@ func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSe
// TODO(jessegross): Ingest cached history for grammar
return &Sequence{
ctx: ctx,
ctxs: ctxs,
inputs: inputs,
numPromptInputs: len(inputs),
startProcessingTime: startTime,
@@ -146,7 +149,7 @@ func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSe
// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
// decoding images
func (s *Server) inputs(ctx ml.Context, prompt string, images []llm.ImageData) ([]input.Input, error) {
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]input.Input, *contextList, error) {
var inputs []input.Input
var parts []string
var matches [][]string
@@ -161,12 +164,19 @@ func (s *Server) inputs(ctx ml.Context, prompt string, images []llm.ImageData) (
parts = []string{prompt}
}
var contexts contextList
runtime.AddCleanup(&contexts, func(ctxs []ml.Context) {
for _, ctx := range ctxs {
ctx.Close()
}
}, contexts.list)
postTokenize := false
for i, part := range parts {
// text - tokenize
tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
if err != nil {
return nil, err
return nil, nil, err
}
for _, t := range tokens {
@@ -186,12 +196,14 @@ func (s *Server) inputs(ctx ml.Context, prompt string, images []llm.ImageData) (
}
if imageIndex < 0 {
return nil, fmt.Errorf("invalid image index: %d", n)
return nil, nil, fmt.Errorf("invalid image index: %d", n)
}
ctx := s.model.Backend().NewContext()
contexts.list = append(contexts.list, ctx)
imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
if err != nil {
return nil, err
return nil, nil, err
}
s.multimodalHash.Reset()
@@ -205,13 +217,13 @@ func (s *Server) inputs(ctx ml.Context, prompt string, images []llm.ImageData) (
if visionModel && postTokenize {
var err error
inputs, err = multimodalProcessor.PostTokenize(ctx, inputs)
inputs, err = multimodalProcessor.PostTokenize(inputs)
if err != nil {
return nil, err
return nil, nil, err
}
}
return inputs, nil
return inputs, &contexts, nil
}
type Server struct {
@@ -306,7 +318,6 @@ func (s *Server) removeSequence(seqIndex int, reason string) {
close(seq.responses)
close(seq.embedding)
seq.cache.InUse = false
seq.ctx.Close()
s.seqs[seqIndex] = nil
s.seqsSem.Release(1)
}