mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-11 00:07:07 +00:00
Convert Safetensors to an Ollama model (#2824)
This commit is contained in:
331
convert/convert.go
Normal file
331
convert/convert.go
Normal file
@@ -0,0 +1,331 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"cmp"
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"slices"
|
||||
|
||||
"github.com/mitchellh/mapstructure"
|
||||
"google.golang.org/protobuf/proto"
|
||||
|
||||
"github.com/jmorganca/ollama/convert/sentencepiece"
|
||||
"github.com/jmorganca/ollama/llm"
|
||||
)
|
||||
|
||||
type Params struct {
|
||||
Architectures []string `json:"architectures"`
|
||||
VocabSize int `json:"vocab_size"`
|
||||
HiddenSize int `json:"hidden_size"` // n_embd
|
||||
HiddenLayers int `json:"num_hidden_layers"` // n_layer
|
||||
ContextSize int `json:"max_position_embeddings"`
|
||||
IntermediateSize int `json:"intermediate_size"`
|
||||
AttentionHeads int `json:"num_attention_heads"` // n_head
|
||||
KeyValHeads int `json:"num_key_value_heads"`
|
||||
NormEPS float64 `json:"rms_norm_eps"`
|
||||
RopeFreqBase float64 `json:"rope_theta"`
|
||||
BoSTokenID int `json:"bos_token_id"`
|
||||
EoSTokenID int `json:"eos_token_id"`
|
||||
}
|
||||
|
||||
type MetaData struct {
|
||||
Type string `mapstructure:"dtype"`
|
||||
Shape []int `mapstructure:"shape"`
|
||||
Offsets []int `mapstructure:"data_offsets"`
|
||||
}
|
||||
|
||||
func ReadSafeTensors(fn string, offset uint64) ([]llm.Tensor, uint64, error) {
|
||||
f, err := os.Open(fn)
|
||||
if err != nil {
|
||||
return []llm.Tensor{}, 0, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var jsonSize uint64
|
||||
binary.Read(f, binary.LittleEndian, &jsonSize)
|
||||
|
||||
buf := make([]byte, jsonSize)
|
||||
_, err = io.ReadFull(f, buf)
|
||||
if err != nil {
|
||||
return []llm.Tensor{}, 0, err
|
||||
}
|
||||
|
||||
d := json.NewDecoder(bytes.NewBuffer(buf))
|
||||
d.UseNumber()
|
||||
var parsed map[string]interface{}
|
||||
if err = d.Decode(&parsed); err != nil {
|
||||
return []llm.Tensor{}, 0, err
|
||||
}
|
||||
|
||||
var keys []string
|
||||
for k := range parsed {
|
||||
keys = append(keys, k)
|
||||
}
|
||||
|
||||
slices.Sort(keys)
|
||||
|
||||
slog.Info("converting layers")
|
||||
|
||||
var tensors []llm.Tensor
|
||||
for _, k := range keys {
|
||||
vals := parsed[k].(map[string]interface{})
|
||||
var data MetaData
|
||||
if err = mapstructure.Decode(vals, &data); err != nil {
|
||||
return []llm.Tensor{}, 0, err
|
||||
}
|
||||
|
||||
var size uint64
|
||||
var kind uint32
|
||||
switch len(data.Shape) {
|
||||
case 0:
|
||||
// metadata
|
||||
continue
|
||||
case 1:
|
||||
// convert to float32
|
||||
kind = 0
|
||||
size = uint64(data.Shape[0] * 4)
|
||||
case 2:
|
||||
// convert to float16
|
||||
kind = 1
|
||||
size = uint64(data.Shape[0] * data.Shape[1] * 2)
|
||||
}
|
||||
|
||||
ggufName, err := GetTensorName(k)
|
||||
if err != nil {
|
||||
slog.Error("%v", err)
|
||||
return []llm.Tensor{}, 0, err
|
||||
}
|
||||
|
||||
shape := [4]uint64{0, 0, 0, 0}
|
||||
for cnt, s := range data.Shape {
|
||||
shape[cnt] = uint64(s)
|
||||
}
|
||||
|
||||
t := llm.Tensor{
|
||||
Name: ggufName,
|
||||
Kind: kind,
|
||||
Offset: offset,
|
||||
Shape: shape,
|
||||
FileName: fn,
|
||||
OffsetPadding: 8 + jsonSize,
|
||||
FileOffsets: []uint64{uint64(data.Offsets[0]), uint64(data.Offsets[1])},
|
||||
}
|
||||
slog.Debug(fmt.Sprintf("%v", t))
|
||||
tensors = append(tensors, t)
|
||||
offset += size
|
||||
}
|
||||
return tensors, offset, nil
|
||||
}
|
||||
|
||||
func GetSafeTensors(dirpath string) ([]llm.Tensor, error) {
|
||||
var tensors []llm.Tensor
|
||||
files, err := filepath.Glob(filepath.Join(dirpath, "/model-*.safetensors"))
|
||||
if err != nil {
|
||||
return []llm.Tensor{}, err
|
||||
}
|
||||
|
||||
var offset uint64
|
||||
for _, f := range files {
|
||||
var t []llm.Tensor
|
||||
var err error
|
||||
t, offset, err = ReadSafeTensors(f, offset)
|
||||
if err != nil {
|
||||
slog.Error("%v", err)
|
||||
return []llm.Tensor{}, err
|
||||
}
|
||||
tensors = append(tensors, t...)
|
||||
}
|
||||
return tensors, nil
|
||||
}
|
||||
|
||||
func GetParams(dirpath string) (*Params, error) {
|
||||
f, err := os.Open(filepath.Join(dirpath, "config.json"))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var params Params
|
||||
|
||||
d := json.NewDecoder(f)
|
||||
err = d.Decode(¶ms)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return ¶ms, nil
|
||||
}
|
||||
|
||||
// Details on gguf's tokenizer can be found at:
|
||||
// https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#tokenizer
|
||||
type Vocab struct {
|
||||
Tokens []string
|
||||
Scores []float32
|
||||
Types []int32
|
||||
}
|
||||
|
||||
func LoadTokens(dirpath string) (*Vocab, error) {
|
||||
slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model")))
|
||||
in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model"))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// To regenerate sentencepiece from the protobufs use:
|
||||
// protoc -I=./ --go_out=./ sentencepiece_model.proto
|
||||
modelProto := &sentencepiece.ModelProto{}
|
||||
if err := proto.Unmarshal(in, modelProto); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
v := &Vocab{
|
||||
Tokens: make([]string, 0),
|
||||
Scores: make([]float32, 0),
|
||||
Types: make([]int32, 0),
|
||||
}
|
||||
|
||||
pieces := modelProto.GetPieces()
|
||||
for _, p := range pieces {
|
||||
v.Tokens = append(v.Tokens, p.GetPiece())
|
||||
v.Scores = append(v.Scores, p.GetScore())
|
||||
t := p.GetType()
|
||||
v.Types = append(v.Types, int32(t))
|
||||
}
|
||||
|
||||
slog.Info(fmt.Sprintf("vocab size: %d", len(v.Tokens)))
|
||||
|
||||
// add any additional tokens
|
||||
addIn, err := os.ReadFile(filepath.Join(dirpath, "added_tokens.json"))
|
||||
if os.IsNotExist(err) {
|
||||
return v, nil
|
||||
} else if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
slog.Info("reading user defined tokens")
|
||||
|
||||
var extraTokenData map[string]int
|
||||
if err := json.Unmarshal(addIn, &extraTokenData); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
type token struct {
|
||||
key string
|
||||
pos int
|
||||
}
|
||||
|
||||
extraTokens := make([]token, 0)
|
||||
for k, id := range extraTokenData {
|
||||
extraTokens = append(extraTokens, token{k, id})
|
||||
}
|
||||
|
||||
slices.SortFunc(extraTokens, func(a, b token) int {
|
||||
return cmp.Compare(a.pos, b.pos)
|
||||
})
|
||||
|
||||
numToks := len(v.Tokens)
|
||||
|
||||
for cnt, t := range extraTokens {
|
||||
// the token id should match the specific index for the total number of tokens
|
||||
if t.pos != cnt+numToks {
|
||||
return nil, fmt.Errorf("token ID '%d' for '%s' doesn't match total token size", t.pos, t.key)
|
||||
}
|
||||
v.Tokens = append(v.Tokens, t.key)
|
||||
v.Scores = append(v.Scores, -1000.0)
|
||||
v.Types = append(v.Types, int32(llm.GGUFTokenUserDefined))
|
||||
}
|
||||
slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens)))
|
||||
|
||||
return v, nil
|
||||
}
|
||||
|
||||
func GetTensorName(n string) (string, error) {
|
||||
tMap := map[string]string{
|
||||
"model.embed_tokens.weight": "token_embd.weight",
|
||||
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
|
||||
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
|
||||
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
|
||||
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
|
||||
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
|
||||
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
|
||||
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
|
||||
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
|
||||
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
|
||||
"lm_head.weight": "output.weight",
|
||||
"model.norm.weight": "output_norm.weight",
|
||||
}
|
||||
|
||||
v, ok := tMap[n]
|
||||
if ok {
|
||||
return v, nil
|
||||
}
|
||||
|
||||
// quick hack to rename the layers to gguf format
|
||||
for k, v := range tMap {
|
||||
re := regexp.MustCompile(k)
|
||||
newName := re.ReplaceAllString(n, v)
|
||||
if newName != n {
|
||||
return newName, nil
|
||||
}
|
||||
}
|
||||
|
||||
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
|
||||
}
|
||||
|
||||
func WriteGGUF(name string, tensors []llm.Tensor, params *Params, vocab *Vocab) (string, error) {
|
||||
c := llm.ContainerGGUF{
|
||||
ByteOrder: binary.LittleEndian,
|
||||
}
|
||||
|
||||
m := llm.NewGGUFModel(&c)
|
||||
m.Tensors = tensors
|
||||
m.KV["general.architecture"] = "llama"
|
||||
m.KV["general.name"] = name
|
||||
m.KV["llama.context_length"] = uint32(params.ContextSize)
|
||||
m.KV["llama.embedding_length"] = uint32(params.HiddenSize)
|
||||
m.KV["llama.block_count"] = uint32(params.HiddenLayers)
|
||||
m.KV["llama.feed_forward_length"] = uint32(params.IntermediateSize)
|
||||
m.KV["llama.rope.dimension_count"] = uint32(128)
|
||||
m.KV["llama.attention.head_count"] = uint32(params.AttentionHeads)
|
||||
m.KV["llama.attention.head_count_kv"] = uint32(params.KeyValHeads)
|
||||
m.KV["llama.attention.layer_norm_rms_epsilon"] = float32(params.NormEPS)
|
||||
m.KV["llama.rope.freq_base"] = float32(params.RopeFreqBase)
|
||||
m.KV["general.file_type"] = uint32(1)
|
||||
m.KV["tokenizer.ggml.model"] = "llama"
|
||||
|
||||
m.KV["tokenizer.ggml.tokens"] = vocab.Tokens
|
||||
m.KV["tokenizer.ggml.scores"] = vocab.Scores
|
||||
m.KV["tokenizer.ggml.token_type"] = vocab.Types
|
||||
|
||||
m.KV["tokenizer.ggml.bos_token_id"] = uint32(params.BoSTokenID)
|
||||
m.KV["tokenizer.ggml.eos_token_id"] = uint32(params.EoSTokenID)
|
||||
m.KV["tokenizer.ggml.unknown_token_id"] = uint32(0)
|
||||
m.KV["tokenizer.ggml.add_bos_token"] = true
|
||||
m.KV["tokenizer.ggml.add_eos_token"] = false
|
||||
|
||||
// llamacpp sets the chat template, however we don't need to set it since we pass it in through a layer
|
||||
// m.KV["tokenizer.chat_template"] = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}" // XXX removeme
|
||||
|
||||
c.V3.NumTensor = uint64(len(tensors))
|
||||
c.V3.NumKV = uint64(len(m.KV))
|
||||
|
||||
f, err := os.CreateTemp("", "ollama-gguf")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
err = m.Encode(f)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
return f.Name(), nil
|
||||
}
|
||||
1497
convert/sentencepiece/sentencepiece_model.pb.go
Normal file
1497
convert/sentencepiece/sentencepiece_model.pb.go
Normal file
File diff suppressed because it is too large
Load Diff
333
convert/sentencepiece_model.proto
Normal file
333
convert/sentencepiece_model.proto
Normal file
@@ -0,0 +1,333 @@
|
||||
// Copyright 2016 Google Inc.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.!
|
||||
|
||||
syntax = "proto2";
|
||||
|
||||
// TODO(taku): Needs to use LITE RUNTIME in OSS release.
|
||||
option optimize_for = LITE_RUNTIME;
|
||||
option go_package = "./sentencepiece";
|
||||
|
||||
package sentencepiece;
|
||||
|
||||
// TrainerSpec encodes a various parameters for SentencePiece training.
|
||||
// Next id: 55
|
||||
message TrainerSpec {
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// General parameters
|
||||
//
|
||||
// Input corpus files.
|
||||
// Trainer accepts the following two formats:
|
||||
// A) Monolingual: plain text, one sentence per line.
|
||||
// B) Bilingual: TSV, source sentence <tab> target sentence
|
||||
// When bilingual data is passed, shared vocabulary model is built.
|
||||
// Note that the input file must be raw corpus, not a preprocessed corpus.
|
||||
// Trainer only loads the first `input_sentence_size` sentences specified
|
||||
// with this parameter.
|
||||
repeated string input = 1;
|
||||
|
||||
// Input corpus format:
|
||||
// "text": one-sentence-per-line text format (default)
|
||||
// "tsv": sentence <tab> freq
|
||||
optional string input_format = 7;
|
||||
|
||||
// Output model file prefix.
|
||||
// <model_prefix>.model and <model_prefix>.vocab are generated.
|
||||
optional string model_prefix = 2;
|
||||
|
||||
// Model type. only have UNIGRAM now.
|
||||
enum ModelType {
|
||||
UNIGRAM = 1; // Unigram language model with dynamic algorithm
|
||||
BPE = 2; // Byte Pair Encoding
|
||||
WORD = 3; // Delimitered by whitespace.
|
||||
CHAR = 4; // tokenizes into character sequence
|
||||
}
|
||||
optional ModelType model_type = 3 [default = UNIGRAM];
|
||||
|
||||
// Vocabulary size. 8k is the default size.
|
||||
optional int32 vocab_size = 4 [default = 8000];
|
||||
|
||||
// List of the languages this model can accept.
|
||||
// Since the model is language-agnostic, this field is used as a reference.
|
||||
repeated string accept_language = 5;
|
||||
|
||||
// Size of self-test samples, which are encoded in the model file.
|
||||
optional int32 self_test_sample_size = 6 [default = 0];
|
||||
|
||||
// Whether to use DP version of sentencepiece. Use it with TSV input format
|
||||
// (requires precomputed word tab counts to work).
|
||||
optional bool enable_differential_privacy = 50 [default = false];
|
||||
// Set these parameters if you need DP version of sentencepiece.
|
||||
// std of noise to add.
|
||||
optional float differential_privacy_noise_level = 51 [default = 0.0];
|
||||
// Clipping threshold to apply after adding noise. All the words with
|
||||
// frequency less than this value are dropped.
|
||||
optional uint64 differential_privacy_clipping_threshold = 52 [default = 0];
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Training parameters.
|
||||
//
|
||||
// Uses characters which cover the corpus with the ratio of `chars_coverage`.
|
||||
// This parameter determines the set of basic Alphabet of sentence piece.
|
||||
// 1.0 - `chars_coverage` characters are treated as UNK.
|
||||
// See also required_chars field.
|
||||
optional float character_coverage = 10 [default = 0.9995];
|
||||
|
||||
// Maximum size of sentences the trainer loads from `input` parameter.
|
||||
// Trainer simply loads the `input` files in sequence.
|
||||
// It is better to shuffle the input corpus randomly.
|
||||
optional uint64 input_sentence_size = 11 [default = 0];
|
||||
optional bool shuffle_input_sentence = 19 [default = true];
|
||||
|
||||
// Maximum size of sentences to make seed sentence pieces.
|
||||
// Extended suffix array is constructed to extract frequent
|
||||
// sub-strings from the corpus. This uses 20N working space,
|
||||
// where N is the size of corpus.
|
||||
optional int32 mining_sentence_size = 12 [deprecated = true];
|
||||
|
||||
// Maximum size of sentences to train sentence pieces.
|
||||
optional int32 training_sentence_size = 13 [deprecated = true];
|
||||
|
||||
// The size of seed sentencepieces.
|
||||
// `seed_sentencepiece_size` must be larger than `vocab_size`.
|
||||
optional int32 seed_sentencepiece_size = 14 [default = 1000000];
|
||||
|
||||
// In every EM sub-iterations, keeps top
|
||||
// `shrinking_factor` * `current sentencepieces size` with respect to
|
||||
// the loss of the sentence piece. This value should be smaller than 1.0.
|
||||
optional float shrinking_factor = 15 [default = 0.75];
|
||||
|
||||
// The maximum sentence length in byte. The sentences with the length
|
||||
// larger than `max_sentence_length` is simply ignored.
|
||||
// Longer input tends to bring the following risks:
|
||||
// * Overflow during EM training (unigram language model only)
|
||||
// * Performance drop because of O(n log n) cost in BPE.
|
||||
optional int32 max_sentence_length = 18 [default = 4192];
|
||||
|
||||
// Number of threads in the training.
|
||||
optional int32 num_threads = 16 [default = 16];
|
||||
|
||||
// Number of EM sub iterations.
|
||||
optional int32 num_sub_iterations = 17 [default = 2];
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// SentencePiece parameters which control the shapes of sentence piece.
|
||||
//
|
||||
// Maximum length of sentencepiece.
|
||||
optional int32 max_sentencepiece_length = 20 [default = 16];
|
||||
|
||||
// Uses Unicode script to split sentence pieces.
|
||||
// When `split_by_unicode_script` is true, we do not allow sentence piece to
|
||||
// include multiple Unicode scripts, e.g. "F1" is not a valid piece.
|
||||
// Exception: CJ characters (Hiragana/Katakana/Han) are all handled
|
||||
// as one script type, since Japanese word can consist of multiple scripts.
|
||||
// This exception is always applied regardless of the accept-language
|
||||
// parameter.
|
||||
optional bool split_by_unicode_script = 21 [default = true];
|
||||
|
||||
// When `split_by_number` is true, put a boundary between number and
|
||||
// non-number transition. If we want to treat "F1" is one token, set this flag
|
||||
// to be false.
|
||||
optional bool split_by_number = 23 [default = true];
|
||||
|
||||
// Use a white space to split sentence pieces.
|
||||
// When `split_by_whitespace` is false, we may have the piece containing
|
||||
// a white space in the middle. e.g., "in_the".
|
||||
optional bool split_by_whitespace = 22 [default = true];
|
||||
|
||||
// Adds whitespace symbol (_) as a suffix instead of prefix. e.g., _hello =>
|
||||
// hello_. When `treat_whitespace_as_suffix` is true,
|
||||
// NormalizerSpec::add_dummy_prefix will add the dummy whitespace to the end
|
||||
// of sentence.
|
||||
optional bool treat_whitespace_as_suffix = 24 [default = false];
|
||||
|
||||
// Allows pieces that only contain whitespaces instead of appearing only as
|
||||
// prefix or suffix of other pieces.
|
||||
optional bool allow_whitespace_only_pieces = 26 [default = false];
|
||||
|
||||
// Split all digits (0-9) into separate pieces.
|
||||
optional bool split_digits = 25 [default = false];
|
||||
|
||||
// Defines the pre-tokenization delimiter.
|
||||
// When specified, no pieces crossing this delimiter is not included
|
||||
// in the vocab. Then the delimiter string is virtually ignored
|
||||
// during the training. This field can allows constraints on the vocabulary
|
||||
// selection. Note that this field is available on unigram mode.
|
||||
optional string pretokenization_delimiter = 53 [ default = ""];
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Vocabulary management
|
||||
//
|
||||
// Defines control symbols used as an indicator to
|
||||
// change the behavior of the decoder. <s> and </s> are pre-defined.
|
||||
// We can use this field to encode various meta information,
|
||||
// including language indicator in multilingual model.
|
||||
// These symbols are not visible to users, but visible to
|
||||
// the decoder. Note that when the input sentence contains control symbols,
|
||||
// they are not treated as one token, but segmented into normal pieces.
|
||||
// Control symbols must be inserted independently from the segmentation.
|
||||
repeated string control_symbols = 30;
|
||||
|
||||
// Defines user defined symbols.
|
||||
// These symbols are added with extremely high score
|
||||
// so they are always treated as one unique symbol in any context.
|
||||
// Typical usage of user_defined_symbols is placeholder for named entities.
|
||||
repeated string user_defined_symbols = 31;
|
||||
|
||||
// Defines required characters. Each UTF8 character in this string is included
|
||||
// in the character set regardless of character_coverage value. Unlike
|
||||
// user_defined_symbols, these characters have scores based on the frequency
|
||||
// on input sentences, and the model can form subwords using characters
|
||||
// in this field.
|
||||
optional string required_chars = 36;
|
||||
|
||||
// Decomposes unknown pieces into UTF-8 bytes.
|
||||
optional bool byte_fallback = 35 [default = false];
|
||||
|
||||
// When creating the vocabulary file, defines whether or not to additionally
|
||||
// output the score for each piece.
|
||||
optional bool vocabulary_output_piece_score = 32 [default = true];
|
||||
|
||||
// `vocab_size` is treated as hard limit. Crash if
|
||||
// the model can not produce the vocab of size `vocab_size`,
|
||||
// When `hard_vocab_limit` is false, vocab_size is treated
|
||||
// as soft limit. Note that when model_type=char,
|
||||
// always assumes hard_vocab_limit = false.
|
||||
optional bool hard_vocab_limit = 33 [default = true];
|
||||
|
||||
// use all symbols for vocab extraction. This flag is valid
|
||||
// if model type is either CHAR or WORD
|
||||
optional bool use_all_vocab = 34 [default = false];
|
||||
|
||||
///////////////////////////////////////////////////////////////////
|
||||
// Reserved special meta tokens.
|
||||
// * -1 is not used.
|
||||
// * unk_id must not be -1.
|
||||
// Id must starts with 0 and be contigous.
|
||||
optional int32 unk_id = 40 [default = 0]; // <unk>
|
||||
optional int32 bos_id = 41 [default = 1]; // <s>
|
||||
optional int32 eos_id = 42 [default = 2]; // </s>
|
||||
optional int32 pad_id = 43 [default = -1]; // <pad> (padding)
|
||||
optional string unk_piece = 45 [default = "<unk>"];
|
||||
optional string bos_piece = 46 [default = "<s>"];
|
||||
optional string eos_piece = 47 [default = "</s>"];
|
||||
optional string pad_piece = 48 [default = "<pad>"];
|
||||
|
||||
// Encodes <unk> into U+2047 (DOUBLE QUESTION MARK),
|
||||
// since this character can be useful both for user and
|
||||
// developer. We can easily figure out that <unk> is emitted.
|
||||
optional string unk_surface = 44 [default = " \xE2\x81\x87 "];
|
||||
|
||||
// Increase bit depth to allow unigram model training on large
|
||||
// (>10M sentences) corpora. A Side-effect of enabling this flag
|
||||
// is increased memory usage.
|
||||
optional bool train_extremely_large_corpus = 49 [default = false];
|
||||
|
||||
// Path to a seed sentencepieces file, with one tab-separated
|
||||
// seed sentencepiece <tab> frequency per line.
|
||||
optional string seed_sentencepieces_file = 54 [default = ""];
|
||||
|
||||
// Customized extensions: the range of field numbers
|
||||
// are open to third-party extensions.
|
||||
extensions 200 to max;
|
||||
}
|
||||
|
||||
// NormalizerSpec encodes a various parameters for string normalizaiton
|
||||
message NormalizerSpec {
|
||||
// name of normalization rule.
|
||||
optional string name = 1;
|
||||
|
||||
// Pre-compiled normalization rule created by
|
||||
// Builder::GetPrecompiledCharsMap() or Builder::CompileCharsMap() method.
|
||||
// Usually this field is set by Builder::GetNormalizerSpec() method.
|
||||
optional bytes precompiled_charsmap = 2;
|
||||
|
||||
// Adds dummy whitespace at the beginning of text in order to
|
||||
// treat "world" in "world" and "hello world" in the same way.
|
||||
optional bool add_dummy_prefix = 3 [default = true];
|
||||
|
||||
// Removes leading, trailing, and duplicate internal whitespace.
|
||||
optional bool remove_extra_whitespaces = 4 [default = true];
|
||||
|
||||
// Replaces whitespace with meta symbol.
|
||||
// This field must be true to train sentence piece model.
|
||||
optional bool escape_whitespaces = 5 [default = true];
|
||||
|
||||
// Custom normalization rule file in TSV format.
|
||||
// https://github.com/google/sentencepiece/blob/master/doc/normalization.md
|
||||
// This field is only used in SentencePieceTrainer::Train() method, which
|
||||
// compiles the rule into the binary rule stored in `precompiled_charsmap`.
|
||||
optional string normalization_rule_tsv = 6;
|
||||
|
||||
// Customized extensions: the range of field numbers
|
||||
// are open to third-party extensions.
|
||||
extensions 200 to max;
|
||||
}
|
||||
|
||||
// Proto to store samples for self-testing.
|
||||
message SelfTestData {
|
||||
message Sample {
|
||||
optional string input = 1;
|
||||
optional string expected = 2;
|
||||
}
|
||||
repeated Sample samples = 1;
|
||||
|
||||
// Customized extensions: the range of field numbers
|
||||
// are open to third-party extensions.
|
||||
extensions 200 to max;
|
||||
}
|
||||
|
||||
// ModelProto stores model parameters.
|
||||
// SentencePieceProcessor is supposed to be self-contained.
|
||||
// All settings/parameters which may change the behavior must be encoded
|
||||
// in ModelProto.
|
||||
message ModelProto {
|
||||
message SentencePiece {
|
||||
enum Type {
|
||||
NORMAL = 1; // normal symbol
|
||||
UNKNOWN = 2; // unknown symbol. only <unk> for now.
|
||||
CONTROL = 3; // control symbols. </s>, <s>, <2ja> etc.
|
||||
USER_DEFINED = 4; // user defined symbols.
|
||||
// Typical usage of USER_DEFINED symbol
|
||||
// is placeholder.
|
||||
BYTE = 6; // byte symbols. Used when `byte_fallback` is true.
|
||||
UNUSED = 5; // this piece is not used.
|
||||
}
|
||||
optional string piece = 1; // piece must not be empty.
|
||||
optional float score = 2;
|
||||
optional Type type = 3 [default = NORMAL];
|
||||
|
||||
// Customized extensions: the range of field numbers
|
||||
// are open to third-party extensions.
|
||||
extensions 200 to max;
|
||||
}
|
||||
|
||||
// Sentence pieces with scores.
|
||||
repeated SentencePiece pieces = 1;
|
||||
|
||||
// Spec used to generate this model file.
|
||||
optional TrainerSpec trainer_spec = 2;
|
||||
|
||||
// Spec for text normalization.
|
||||
optional NormalizerSpec normalizer_spec = 3;
|
||||
|
||||
// Stores sample input and its expected segmentation to verify the model.
|
||||
optional SelfTestData self_test_data = 4;
|
||||
|
||||
// Spec for text de-normalization.
|
||||
optional NormalizerSpec denormalizer_spec = 5;
|
||||
|
||||
// Customized extensions: the range of field numbers
|
||||
// are open to third-party extensions.
|
||||
extensions 200 to max;
|
||||
}
|
||||
Reference in New Issue
Block a user