mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-12 00:37:04 +00:00
Fix follow up images and images split across batches
This commit is contained in:
committed by
Michael Yang
parent
e95278932b
commit
2c40c4d35e
@@ -5,7 +5,6 @@ import (
|
||||
"encoding/binary"
|
||||
"hash/fnv"
|
||||
"image"
|
||||
"slices"
|
||||
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
@@ -99,49 +98,43 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
|
||||
return visionOutputs, nil
|
||||
}
|
||||
|
||||
type imageToken struct {
|
||||
embedding ml.Tensor
|
||||
index int
|
||||
}
|
||||
|
||||
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
|
||||
var images []input.Input
|
||||
var result []input.Input
|
||||
fnvHash := fnv.New64a()
|
||||
|
||||
for i := range inputs {
|
||||
if inputs[i].Multimodal == nil {
|
||||
for j := range images {
|
||||
if j == 0 {
|
||||
inputs[i].Multimodal = images[j].Multimodal
|
||||
inputs[i].MultimodalHash = images[j].MultimodalHash
|
||||
} else {
|
||||
inputs[i].Multimodal = inputs[i].Multimodal.(ml.Tensor).Concat(ctx, images[j].Multimodal.(ml.Tensor), 3)
|
||||
fnvHash.Reset()
|
||||
binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
|
||||
binary.Write(fnvHash, binary.NativeEndian, images[j].MultimodalHash)
|
||||
inputs[i].MultimodalHash = fnvHash.Sum64()
|
||||
}
|
||||
}
|
||||
|
||||
images = nil
|
||||
for _, inp := range inputs {
|
||||
if inp.Multimodal == nil {
|
||||
result = append(result, inp)
|
||||
} else {
|
||||
images = append(images, inputs[i])
|
||||
inputs[i].Token = -1
|
||||
}
|
||||
}
|
||||
|
||||
for i := range inputs {
|
||||
if inputs[i].Token == -1 {
|
||||
imageInputs := []input.Input{
|
||||
{Token: 108}, // "\n\n"
|
||||
{Token: 255999}, // "<start_of_image>""
|
||||
}
|
||||
result = append(result, imageInputs...)
|
||||
|
||||
// add image embeddings
|
||||
inputMultimodal := inp.Multimodal.(ml.Tensor)
|
||||
|
||||
for i := range inputMultimodal.Dim(1) {
|
||||
fnvHash.Reset()
|
||||
binary.Write(fnvHash, binary.NativeEndian, inp.MultimodalHash)
|
||||
fnvHash.Write([]byte{byte(i)})
|
||||
|
||||
imageToken := imageToken{embedding: inputMultimodal, index: i}
|
||||
result = append(result, input.Input{Multimodal: imageToken, MultimodalHash: fnvHash.Sum64()})
|
||||
}
|
||||
|
||||
// pad inputs with placeholders for image embeddings
|
||||
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 0}}, 256)...)
|
||||
// <end_of_image>
|
||||
imageInputs = append(imageInputs, input.Input{Token: 256000})
|
||||
|
||||
inputs = append(inputs[:i], append(imageInputs, inputs[i+1:]...)...)
|
||||
result = append(result, input.Input{Token: 256000})
|
||||
}
|
||||
}
|
||||
|
||||
return inputs, nil
|
||||
return result, nil
|
||||
}
|
||||
|
||||
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
|
||||
@@ -160,7 +153,7 @@ func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return m.TextModel.Forward(ctx, inputs, positions, outputs, opts.Multimodal, m.Cache), nil
|
||||
return m.TextModel.Forward(ctx, inputs, positions, outputs, opts, m.Cache), nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
|
||||
Reference in New Issue
Block a user