mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-11 00:07:07 +00:00
Request and model concurrency
This change adds support for multiple concurrent requests, as well as loading multiple models by spawning multiple runners. The default settings are currently set at 1 concurrent request per model and only 1 loaded model at a time, but these can be adjusted by setting OLLAMA_NUM_PARALLEL and OLLAMA_MAX_LOADED_MODELS.
This commit is contained in:
162
llm/memory.go
Normal file
162
llm/memory.go
Normal file
@@ -0,0 +1,162 @@
|
||||
package llm
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"strings"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/gpu"
|
||||
)
|
||||
|
||||
// This algorithm looks for a complete fit to determine if we need to unload other models
|
||||
func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
|
||||
var estimatedVRAM uint64
|
||||
if opts.NumCtx > int(ggml.KV().ContextLength()) {
|
||||
slog.Warn("requested context length is greater than model max context length", "requested", opts.NumCtx, "model", ggml.KV().ContextLength())
|
||||
opts.NumCtx = int(ggml.KV().ContextLength())
|
||||
}
|
||||
|
||||
if opts.NumCtx < 4 {
|
||||
opts.NumCtx = 4
|
||||
}
|
||||
|
||||
// Split up the GPUs by type and try them
|
||||
for _, gpus := range allGpus.ByLibrary() {
|
||||
var layerCount int
|
||||
layerCount, estimatedVRAM = EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
if opts.NumGPU < 0 {
|
||||
if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
|
||||
return true, estimatedVRAM
|
||||
}
|
||||
} else {
|
||||
if layerCount > 0 && layerCount >= opts.NumGPU {
|
||||
return true, estimatedVRAM
|
||||
}
|
||||
}
|
||||
}
|
||||
return false, estimatedVRAM
|
||||
}
|
||||
|
||||
// Given a model and one or more GPU targets, predict how many layers and bytes we can load
|
||||
// The GPUs provided must all be the same Library
|
||||
func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) (int, uint64) {
|
||||
if gpus[0].Library == "cpu" {
|
||||
return 0, 0
|
||||
}
|
||||
var memoryAvailable uint64
|
||||
for _, info := range gpus {
|
||||
memoryAvailable += info.FreeMemory
|
||||
}
|
||||
slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", format.HumanBytes2(memoryAvailable))
|
||||
|
||||
// TODO - this is probably wrong, first GPU vs secondaries will have different overheads
|
||||
memoryMinimum := gpus[0].MinimumMemory
|
||||
|
||||
for _, projector := range projectors {
|
||||
memoryMinimum += projectorMemoryRequirements(projector)
|
||||
|
||||
// multimodal models require at least 2048 context
|
||||
opts.NumCtx = max(opts.NumCtx, 2048)
|
||||
}
|
||||
|
||||
// fp16 k,v = (1 (k) + 1 (v)) * sizeof(float16) * n_ctx * n_layer * n_embd / n_head * n_head_kv
|
||||
var kv uint64 = 2 * 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * ggml.KV().EmbeddingLength() / ggml.KV().HeadCount() * ggml.KV().HeadCountKV()
|
||||
|
||||
graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
|
||||
if graphPartialOffload == 0 {
|
||||
graphPartialOffload = ggml.KV().GQA() * kv / 6
|
||||
}
|
||||
|
||||
if graphFullOffload == 0 {
|
||||
graphFullOffload = graphPartialOffload
|
||||
}
|
||||
|
||||
graphFullOffload *= uint64(len(gpus))
|
||||
graphPartialOffload *= uint64(len(gpus))
|
||||
|
||||
// memoryRequiredTotal represents the memory required for full GPU offloading (all layers)
|
||||
memoryRequiredTotal := memoryMinimum + graphFullOffload
|
||||
|
||||
// memoryRequiredPartial represents the memory required for partial GPU offloading (n > 0, n < layers)
|
||||
memoryRequiredPartial := memoryMinimum + graphPartialOffload
|
||||
|
||||
if memoryRequiredPartial > memoryAvailable {
|
||||
slog.Debug("insufficient VRAM to load any model layers")
|
||||
return 0, 0
|
||||
}
|
||||
|
||||
var layerCount int
|
||||
layers := ggml.Tensors().Layers()
|
||||
for i := 0; i < int(ggml.KV().BlockCount()); i++ {
|
||||
memoryLayer := layers[fmt.Sprintf("blk.%d", i)].size()
|
||||
|
||||
// KV is proportional to the number of layers
|
||||
memoryLayer += kv / ggml.KV().BlockCount()
|
||||
|
||||
memoryRequiredTotal += memoryLayer
|
||||
if memoryAvailable > memoryRequiredPartial+memoryLayer {
|
||||
memoryRequiredPartial += memoryLayer
|
||||
layerCount++
|
||||
}
|
||||
}
|
||||
|
||||
var memoryLayerOutput uint64
|
||||
for k, v := range layers {
|
||||
if !strings.HasPrefix(k, "blk.") {
|
||||
memoryLayerOutput += v.size()
|
||||
}
|
||||
}
|
||||
|
||||
memoryRequiredTotal += memoryLayerOutput
|
||||
|
||||
if memoryAvailable > memoryRequiredTotal {
|
||||
layerCount = int(ggml.KV().BlockCount()) + 1
|
||||
memoryRequiredPartial = memoryRequiredTotal
|
||||
}
|
||||
|
||||
memoryWeights := memoryRequiredTotal - memoryMinimum - graphFullOffload - kv
|
||||
|
||||
slog.Info(
|
||||
"offload to gpu",
|
||||
slog.Group(
|
||||
"layers",
|
||||
// actual number of layers offloaded
|
||||
"real", opts.NumGPU,
|
||||
// estimated number of layers that can be offloaded
|
||||
"estimate", layerCount,
|
||||
),
|
||||
slog.Group(
|
||||
"memory",
|
||||
// memory available for offloading
|
||||
"available", format.HumanBytes2(memoryAvailable),
|
||||
slog.Group(
|
||||
"required",
|
||||
// memory required for full offloading
|
||||
"full", format.HumanBytes2(memoryRequiredTotal),
|
||||
// memory required to offload layers.estimate layers
|
||||
"partial", format.HumanBytes2(memoryRequiredPartial),
|
||||
// memory of KV cache
|
||||
"kv", format.HumanBytes2(kv),
|
||||
),
|
||||
slog.Group(
|
||||
"weights",
|
||||
// memory of the weights
|
||||
"total", format.HumanBytes2(memoryWeights),
|
||||
// memory of repeating layers
|
||||
"repeating", format.HumanBytes2(memoryWeights-memoryLayerOutput),
|
||||
// memory of non-repeating layers
|
||||
"nonrepeating", format.HumanBytes2(memoryLayerOutput),
|
||||
),
|
||||
slog.Group(
|
||||
"graph",
|
||||
// memory of graph when fully offloaded
|
||||
"full", format.HumanBytes2(graphFullOffload),
|
||||
// memory of graph when not fully offloaded
|
||||
"partial", format.HumanBytes2(graphPartialOffload),
|
||||
),
|
||||
),
|
||||
)
|
||||
return layerCount, uint64(memoryRequiredPartial)
|
||||
}
|
||||
Reference in New Issue
Block a user