fix conversion for f16 or f32 inputs

This commit is contained in:
Michael Yang
2024-05-17 12:11:49 -07:00
parent bbbd9f20f3
commit 34d5ef29b3
7 changed files with 152 additions and 294 deletions

View File

@@ -1,7 +1,7 @@
package convert
import (
"encoding/binary"
"cmp"
"errors"
"fmt"
"io"
@@ -10,10 +10,8 @@ import (
"regexp"
"strings"
"github.com/nlpodyssey/gopickle/pytorch"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/x448/float16"
"github.com/ollama/ollama/llm"
)
@@ -22,83 +20,6 @@ type LlamaModel struct {
ModelData
}
func llamaTorchLayerHandler(w io.Writer, r torchWriterTo) error {
var tData []uint16
switch r.storage.(type) {
case *pytorch.HalfStorage:
data := r.storage.(*pytorch.HalfStorage).Data
tData = make([]uint16, len(data))
for cnt, v := range data {
tData[cnt] = uint16(float16.Fromfloat32(v))
}
case *pytorch.BFloat16Storage:
data := r.storage.(*pytorch.BFloat16Storage).Data
tData = make([]uint16, len(data))
for cnt, v := range data {
tData[cnt] = uint16(float16.Fromfloat32(v))
}
default:
return fmt.Errorf("unknown storage type for torch")
}
var err error
var heads uint32
if strings.Contains(r.t.Name, "attn_q") {
heads = uint32(r.params.AttentionHeads)
} else if strings.Contains(r.t.Name, "attn_k") {
heads = uint32(r.params.KeyValHeads)
if heads == 0 {
heads = uint32(r.params.AttentionHeads)
}
} else {
return fmt.Errorf("unknown layer type")
}
tData, err = llamaRepack(tData, int(heads), r.t.Shape)
if err != nil {
return err
}
if err = binary.Write(w, r.bo, tData); err != nil {
return err
}
return nil
}
func llamaRepack(data []uint16, heads int, shape []uint64) ([]uint16, error) {
n := tensor.New(tensor.WithShape(int(shape[0]), int(shape[1])), tensor.WithBacking(data))
origShape := n.Shape().Clone()
// reshape the tensor and swap axes 1 and 2 to unpack the layer for gguf
if err := n.Reshape(heads, 2, origShape[0]/heads/2, origShape[1]); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(origShape...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
newN, err := native.SelectU16(n, 1)
if err != nil {
return nil, err
}
var fullTensor []uint16
for _, v := range newN {
fullTensor = append(fullTensor, v...)
}
return fullTensor, nil
}
func (m *LlamaModel) GetTensors() error {
t, err := m.Format.GetTensors(m.Path, m.Params)
if err != nil {
@@ -117,11 +38,11 @@ func (m *LlamaModel) GetTensors() error {
switch m.Format.(type) {
case *TorchFormat:
wt := l.WriterTo.(torchWriterTo)
wt.handler = llamaTorchLayerHandler
wt.repacker = m.Repack
l.WriterTo = wt
case *SafetensorFormat:
wt := l.WriterTo.(safetensorWriterTo)
wt.handler = mistralLayerHandler
wt.repacker = m.Repack
l.WriterTo = wt
}
}
@@ -184,3 +105,54 @@ func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error {
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
}
func (m *LlamaModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
return llamaRepack(name, m.Params, data, shape)
}
func llamaRepack(name string, params *Params, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
if dim != 0 {
dims = append(dims, int(dim))
}
}
var heads int
if strings.HasSuffix(name, "attn_q.weight") {
heads = params.AttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight") {
heads = cmp.Or(params.KeyValHeads, params.AttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor name: %s", name)
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{heads, 2, dims[0] / heads / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}