mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-09 23:37:06 +00:00
ollamarunner: Separate text and multimodal graphs
For some multimodal models (such as gemma3), we create a single graph that generates the image embedding and then use this in the text model. The embedding tensor is completely opaque to the runner. However, this doesn't work if we need to use the embedding in multiple batches. This can arise if the embedding is larger than the batch size. In these cases (as with llama4), we would like to create views that are more appropriately sized. However, if we do this then the original source tensor is used in multiple graphs, which isn't allowed. To avoid that problem, models with this pattern compute the embedding tensor on first use and recreate the individual views. There is no longer a single vision and text graph. This codifies the pattern of separating vision and text graphs. The logic of computing tensors on demand is moved to the runner, so models no longer have to worry about this. It also gives the runner visibility into the multimodal tensors, which is important for memory management.
This commit is contained in:
@@ -2,16 +2,30 @@ package input
|
||||
|
||||
import "github.com/ollama/ollama/ml"
|
||||
|
||||
// Multimodal is a multimodal embedding or a component of one.
|
||||
// For example, it could be a row of an image that can be processed
|
||||
// independently.
|
||||
type Multimodal struct {
|
||||
// Tensor is the embedding data. Implementations may chose what to
|
||||
// store here or it may be nil if not needed. However, any ml.Tensor
|
||||
// objects must be stored here and not in Data.
|
||||
Tensor ml.Tensor
|
||||
|
||||
// Data is implementation-specific opaque data, such as metadata on how
|
||||
// to layout Tensor. It may be nil if not needed. It may also store larger
|
||||
// objects such as complete images if they are to be processed later.
|
||||
Data any
|
||||
}
|
||||
|
||||
// Input represents one token in the input stream
|
||||
type Input struct {
|
||||
// Token is a single element of text.
|
||||
Token int32
|
||||
|
||||
// Multimodal is opaque data representing a non-text
|
||||
// element such as an image (or part of one if the image
|
||||
// can be processed in pieces). It may be either together
|
||||
// with Token or on its own.
|
||||
Multimodal any
|
||||
// Multimodal is represents a non-text element such as an
|
||||
// image (or part of one if the image can be processed in pieces).
|
||||
// It may be used either together with Token or on its own.
|
||||
Multimodal []Multimodal
|
||||
|
||||
// MultimodalHash is a unique representation of the data
|
||||
// stored in Multimodal, used for caching and comparing
|
||||
@@ -32,7 +46,7 @@ type Input struct {
|
||||
// Positions slice.
|
||||
type MultimodalIndex struct {
|
||||
Index int
|
||||
Multimodal any
|
||||
Multimodal []Multimodal
|
||||
}
|
||||
|
||||
// Batch contains the inputs for a model forward pass
|
||||
|
||||
@@ -40,12 +40,13 @@ type MultimodalProcessor interface {
|
||||
// EncodeMultimodal processes a single input (such as an image) and
|
||||
// generates an output (typically an embedding) that can be used by the model.
|
||||
//
|
||||
// The return value is most typically an ml.Tensor, however, different
|
||||
// type are possible, such as an object containing a tensor plus
|
||||
// additional metadata, a slice of tensors or even just the original input.
|
||||
// The return value is one or more tensors, each with optional model-specific
|
||||
// opaque metadata. Typically, the tensors might be views into an embedding
|
||||
// with each view representing a chunk of data that can be processed independently
|
||||
// in different batches.
|
||||
//
|
||||
// The result may be cached by the runner.
|
||||
EncodeMultimodal(ml.Context, []byte) (any, error)
|
||||
EncodeMultimodal(ml.Context, []byte) ([]input.Multimodal, error)
|
||||
|
||||
// PostTokenize is called after tokenization to allow the model to edit the
|
||||
// input stream to correctly arrange multimodal elements.
|
||||
|
||||
@@ -82,7 +82,7 @@ func New(c fs.Config) (model.Model, error) {
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
|
||||
if len(m.VisionModel.Layers) == 0 {
|
||||
return nil, model.ErrNoVisionModel
|
||||
}
|
||||
@@ -108,22 +108,22 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
|
||||
|
||||
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
|
||||
visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.imageSize, m.patchSize, m.VisionModel.eps)
|
||||
return visionOutputs, nil
|
||||
return []input.Multimodal{{Tensor: visionOutputs}}, nil
|
||||
}
|
||||
|
||||
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
var result []input.Input
|
||||
|
||||
for _, inp := range inputs {
|
||||
if inp.Multimodal == nil {
|
||||
if len(inp.Multimodal) == 0 {
|
||||
result = append(result, inp)
|
||||
} else {
|
||||
inputMultimodal := inp.Multimodal.(ml.Tensor)
|
||||
inputMultimodal := inp.Multimodal[0].Tensor
|
||||
|
||||
result = append(result,
|
||||
input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
|
||||
input.Input{Token: 255999}, // "<start_of_image>""
|
||||
input.Input{Multimodal: inputMultimodal, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
|
||||
input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
|
||||
input.Input{Token: 255999}, // "<start_of_image>""
|
||||
input.Input{Multimodal: []input.Multimodal{{Tensor: inputMultimodal}}, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
|
||||
)
|
||||
|
||||
// add image token placeholders
|
||||
|
||||
@@ -165,7 +165,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
|
||||
// set image embeddings
|
||||
var except []int
|
||||
for _, image := range batch.Multimodal {
|
||||
visionOutputs := image.Multimodal.(ml.Tensor)
|
||||
visionOutputs := image.Multimodal[0].Tensor
|
||||
ctx.Forward(visionOutputs.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), visionOutputs.Dim(0)*visionOutputs.Dim(1))))
|
||||
|
||||
for i := range visionOutputs.Dim(1) {
|
||||
|
||||
@@ -4,7 +4,6 @@ import (
|
||||
"bytes"
|
||||
"image"
|
||||
"slices"
|
||||
"sync"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
@@ -63,7 +62,7 @@ func New(c fs.Config) (model.Model, error) {
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
|
||||
if len(m.VisionModel.Layers) < 1 {
|
||||
return nil, model.ErrNoVisionModel
|
||||
}
|
||||
@@ -103,70 +102,79 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
|
||||
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
|
||||
visionOutputs = visionOutputs.Reshape(ctx, visionOutputs.Dim(0), visionOutputs.Dim(1)*visionOutputs.Dim(2)*visionOutputs.Dim(3))
|
||||
projectedOutputs := m.Projector.Forward(ctx, visionOutputs)
|
||||
return &chunks{Model: m, Tensor: projectedOutputs, aspectRatio: image.Point{ratioW, ratioH}}, nil
|
||||
|
||||
var multimodal []input.Multimodal
|
||||
aspectRatio := image.Point{ratioW, ratioH}
|
||||
|
||||
var offset int
|
||||
patchesPerChunk := projectedOutputs.Dim(1)
|
||||
if aspectRatio.Y*aspectRatio.X > 1 {
|
||||
patchesPerChunk = projectedOutputs.Dim(1) / (aspectRatio.X*aspectRatio.Y + 1)
|
||||
|
||||
for range aspectRatio.Y {
|
||||
for x := range aspectRatio.X {
|
||||
view := projectedOutputs.View(ctx, projectedOutputs.Stride(1)*offset,
|
||||
projectedOutputs.Dim(0), projectedOutputs.Stride(1),
|
||||
patchesPerChunk)
|
||||
var separator separator
|
||||
if x < aspectRatio.X-1 {
|
||||
separator.x = true // <|tile_x_separator|>
|
||||
} else {
|
||||
separator.y = true // <|tile_y_separator|>
|
||||
}
|
||||
multimodal = append(multimodal, input.Multimodal{Tensor: view, Data: &separator})
|
||||
offset += patchesPerChunk
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
view := projectedOutputs.View(ctx, projectedOutputs.Stride(1)*offset,
|
||||
projectedOutputs.Dim(0), projectedOutputs.Stride(1),
|
||||
patchesPerChunk)
|
||||
multimodal = append(multimodal, input.Multimodal{Tensor: view, Data: &separator{}})
|
||||
|
||||
return multimodal, nil
|
||||
}
|
||||
|
||||
type chunks struct {
|
||||
*Model
|
||||
ml.Tensor
|
||||
aspectRatio image.Point
|
||||
|
||||
dataOnce sync.Once
|
||||
data []float32
|
||||
}
|
||||
|
||||
type chunk struct {
|
||||
*chunks
|
||||
s, n int
|
||||
}
|
||||
|
||||
func (r *chunk) floats() []float32 {
|
||||
r.dataOnce.Do(func() {
|
||||
temp := r.Backend().NewContext()
|
||||
defer temp.Close()
|
||||
temp.Forward(r.Tensor).Compute(r.Tensor)
|
||||
r.data = r.Floats()
|
||||
})
|
||||
|
||||
return r.data[r.s*r.Dim(0) : (r.s+r.n)*r.Dim(0)]
|
||||
type separator struct {
|
||||
x bool
|
||||
y bool
|
||||
}
|
||||
|
||||
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
var result []input.Input
|
||||
for _, inp := range inputs {
|
||||
if inp.Multimodal == nil {
|
||||
if len(inp.Multimodal) == 0 {
|
||||
result = append(result, inp)
|
||||
continue
|
||||
}
|
||||
|
||||
t := inp.Multimodal.(*chunks)
|
||||
var imageInputs []input.Input
|
||||
imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_start|>
|
||||
|
||||
var offset int
|
||||
patchesPerChunk := t.Dim(1)
|
||||
if t.aspectRatio.Y*t.aspectRatio.X > 1 {
|
||||
patchesPerChunk = t.Dim(1) / (t.aspectRatio.X*t.aspectRatio.Y + 1)
|
||||
for i, mm := range inp.Multimodal {
|
||||
patchesPerChunk := mm.Tensor.Dim(1)
|
||||
|
||||
for range t.aspectRatio.Y {
|
||||
for x := range t.aspectRatio.X {
|
||||
imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: &chunk{t, offset, patchesPerChunk}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
|
||||
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
|
||||
if x < t.aspectRatio.X-1 {
|
||||
imageInputs = append(imageInputs, input.Input{Token: 200084}) // <|tile_x_separator|>
|
||||
}
|
||||
offset += patchesPerChunk
|
||||
if i < len(inp.Multimodal)-1 {
|
||||
separator := mm.Data.(*separator)
|
||||
|
||||
imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: []input.Multimodal{{Tensor: mm.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
|
||||
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
|
||||
|
||||
if separator.x {
|
||||
imageInputs = append(imageInputs, input.Input{Token: 200084}) // <|tile_x_separator|>
|
||||
}
|
||||
|
||||
imageInputs = append(imageInputs, input.Input{Token: 200085}) // <|tile_y_separator|>
|
||||
if separator.y {
|
||||
imageInputs = append(imageInputs, input.Input{Token: 200085}) // <|tile_y_separator|>
|
||||
}
|
||||
} else {
|
||||
imageInputs = append(imageInputs, input.Input{Token: 200090}) // <|image|>
|
||||
imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: []input.Multimodal{{Tensor: mm.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
|
||||
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
|
||||
imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_end|>
|
||||
}
|
||||
}
|
||||
|
||||
imageInputs = append(imageInputs, input.Input{Token: 200090}) // <|image|>
|
||||
imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: &chunk{t, offset, patchesPerChunk}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
|
||||
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
|
||||
imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_end|>
|
||||
|
||||
result = append(result, imageInputs...)
|
||||
}
|
||||
|
||||
|
||||
@@ -210,12 +210,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
|
||||
hiddenStates := m.TokenEmbedding.Forward(ctx, inputs).Duplicate(ctx)
|
||||
|
||||
for _, mi := range batch.Multimodal {
|
||||
f32s := mi.Multimodal.(*chunk).floats()
|
||||
img, err := ctx.Input().FromFloatSlice(f32s, len(f32s)/m.hiddenSize, m.hiddenSize)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
img := mi.Multimodal[0].Tensor
|
||||
ctx.Forward(img.Copy(ctx, hiddenStates.View(ctx, mi.Index*hiddenStates.Stride(1), img.Dim(0)*img.Dim(1))))
|
||||
}
|
||||
|
||||
|
||||
@@ -4,7 +4,6 @@ import (
|
||||
"bytes"
|
||||
"image"
|
||||
"slices"
|
||||
"sync"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
@@ -105,7 +104,7 @@ func newMultiModalProjector(c fs.Config) *MultiModalProjector {
|
||||
}
|
||||
}
|
||||
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
|
||||
if len(m.VisionModel.Layers) == 0 {
|
||||
return nil, model.ErrNoVisionModel
|
||||
}
|
||||
@@ -129,37 +128,14 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
|
||||
features, size := m.MultiModalProjector.Forward(ctx, visionOutputs, size)
|
||||
|
||||
// split into patches to be sent to the text transformer
|
||||
parent := imageFeatures{tensor: features}
|
||||
rows := make([]*imageRow, size.Y)
|
||||
rows := make([]input.Multimodal, size.Y)
|
||||
for i := range rows {
|
||||
rows[i] = &imageRow{parent: &parent, s: i, shape: []int{features.Dim(0), size.X}}
|
||||
rows[i].Tensor = features.View(ctx, features.Stride(1)*size.X*i, features.Dim(0), features.Stride(1), size.X)
|
||||
}
|
||||
|
||||
return rows, nil
|
||||
}
|
||||
|
||||
type imageFeatures struct {
|
||||
tensor ml.Tensor
|
||||
|
||||
dataOnce sync.Once
|
||||
data []float32
|
||||
}
|
||||
|
||||
type imageRow struct {
|
||||
parent *imageFeatures
|
||||
s int
|
||||
shape []int
|
||||
}
|
||||
|
||||
func (r *imageRow) data() []float32 {
|
||||
n := 1
|
||||
for _, s := range r.shape {
|
||||
n *= s
|
||||
}
|
||||
|
||||
return r.parent.data[r.s*n : (r.s+1)*n]
|
||||
}
|
||||
|
||||
// PostTokenize arranges Mistral 3's inputs for the forward pass
|
||||
// In Mistral 3 and Pixtral, the input patches are arranged as follows:
|
||||
// [IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_END]
|
||||
@@ -168,15 +144,14 @@ func (r *imageRow) data() []float32 {
|
||||
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
var result []input.Input
|
||||
for _, inp := range inputs {
|
||||
if inp.Multimodal == nil {
|
||||
if len(inp.Multimodal) == 0 {
|
||||
result = append(result, inp)
|
||||
} else {
|
||||
inputMultimodal := inp.Multimodal.([]*imageRow)
|
||||
for i, row := range inputMultimodal {
|
||||
for i, row := range inp.Multimodal {
|
||||
// [IMG]
|
||||
result = append(result, input.Input{Token: 10, Multimodal: row, MultimodalHash: inp.MultimodalHash, SameBatch: row.shape[1]})
|
||||
result = append(result, slices.Repeat([]input.Input{{Token: 10}}, row.shape[1]-1)...)
|
||||
if i == len(inputMultimodal)-1 {
|
||||
result = append(result, input.Input{Token: 10, Multimodal: []input.Multimodal{{Tensor: row.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: row.Tensor.Dim(1)})
|
||||
result = append(result, slices.Repeat([]input.Input{{Token: 10}}, row.Tensor.Dim(1)-1)...)
|
||||
if i == len(inp.Multimodal)-1 {
|
||||
// [IMG_END]
|
||||
result = append(result, input.Input{Token: 13})
|
||||
} else {
|
||||
|
||||
@@ -9,7 +9,6 @@ import (
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/nn"
|
||||
"github.com/ollama/ollama/model"
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
@@ -20,8 +19,6 @@ type TextOptions struct {
|
||||
}
|
||||
|
||||
type TextModel struct {
|
||||
model.Base
|
||||
|
||||
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
||||
Layers []Layer `gguf:"blk"`
|
||||
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
||||
@@ -109,20 +106,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
|
||||
|
||||
// image embeddings
|
||||
for _, image := range batch.Multimodal {
|
||||
row := image.Multimodal.(*imageRow)
|
||||
row.parent.dataOnce.Do(func() {
|
||||
// use a new, throwaway context so the image tensor is not added to the graph
|
||||
temp := m.Backend().NewContext()
|
||||
temp.Forward(row.parent.tensor).Compute(row.parent.tensor)
|
||||
row.parent.data = row.parent.tensor.Floats()
|
||||
temp.Close()
|
||||
})
|
||||
|
||||
imageFeature, err := ctx.Input().FromFloatSlice(row.data(), row.shape...)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
imageFeature := image.Multimodal[0].Tensor
|
||||
ctx.Forward(imageFeature.Copy(ctx, hiddenState.View(ctx, image.Index*hiddenState.Stride(1), imageFeature.Dim(0)*imageFeature.Dim(1))))
|
||||
}
|
||||
|
||||
|
||||
@@ -59,7 +59,7 @@ func New(c fs.Config) (model.Model, error) {
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
|
||||
if len(m.VisionModel.Transformer.Layers) == 0 || len(m.GlobalTransformer.Layers) == 0 {
|
||||
return nil, model.ErrNoVisionModel
|
||||
}
|
||||
@@ -92,7 +92,9 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
|
||||
|
||||
positionIDs := ctx.Arange(0, 1601, 1, ml.DTypeI32)
|
||||
crossAttentionStates := m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
|
||||
return m.Projector.Forward(ctx, crossAttentionStates), nil
|
||||
projectedOutputs := m.Projector.Forward(ctx, crossAttentionStates)
|
||||
|
||||
return []input.Multimodal{{Tensor: projectedOutputs}}, nil
|
||||
}
|
||||
|
||||
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
@@ -108,7 +110,7 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
var crossAttentionStates ml.Tensor
|
||||
if len(batch.Multimodal) > 0 {
|
||||
crossAttentionStates = batch.Multimodal[len(batch.Multimodal)-1].Multimodal.(ml.Tensor)
|
||||
crossAttentionStates = batch.Multimodal[len(batch.Multimodal)-1].Multimodal[0].Tensor
|
||||
}
|
||||
|
||||
positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
|
||||
@@ -5,7 +5,6 @@ import (
|
||||
"fmt"
|
||||
"image"
|
||||
"slices"
|
||||
"sync"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/kvcache"
|
||||
@@ -77,7 +76,7 @@ func (m *Model) PixelValues(ctx ml.Context, multimodalData []byte) (ml.Tensor, *
|
||||
return pixelValues, grid, nil
|
||||
}
|
||||
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
|
||||
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
|
||||
if len(m.VisionModel.Layers) == 0 {
|
||||
return nil, model.ErrNoVisionModel
|
||||
}
|
||||
@@ -88,31 +87,7 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, er
|
||||
}
|
||||
|
||||
visionOutputs := m.VisionModel.Forward(ctx, pixels, grid)
|
||||
return &chunks{Model: m, Tensor: visionOutputs}, nil
|
||||
}
|
||||
|
||||
type chunks struct {
|
||||
*Model
|
||||
ml.Tensor
|
||||
|
||||
dataOnce sync.Once
|
||||
data []float32
|
||||
}
|
||||
|
||||
type chunk struct {
|
||||
*chunks
|
||||
s, n int
|
||||
}
|
||||
|
||||
func (r *chunk) floats() []float32 {
|
||||
r.dataOnce.Do(func() {
|
||||
temp := r.Backend().NewContext()
|
||||
defer temp.Close()
|
||||
temp.Forward(r.Tensor).Compute(r.Tensor)
|
||||
r.data = r.Floats()
|
||||
})
|
||||
|
||||
return r.data[r.s*r.Dim(0) : (r.s+r.n)*r.Dim(0)]
|
||||
return []input.Multimodal{{Tensor: visionOutputs}}, nil
|
||||
}
|
||||
|
||||
// PostTokenize arranges Qwen-2.5-VL's inputs for the forward pass
|
||||
@@ -142,20 +117,16 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
||||
result = append(result, input.Input{Token: pre[i]})
|
||||
}
|
||||
|
||||
// This is an image token with multimodal data
|
||||
chunksData := inp.Multimodal.(*chunks)
|
||||
patchesPerChunk := chunksData.Dim(1)
|
||||
patchesPerChunk := inp.Multimodal[0].Tensor.Dim(1)
|
||||
|
||||
// First add the vision start token
|
||||
result = append(result, input.Input{Token: visionStartToken, SameBatch: patchesPerChunk + 2})
|
||||
result = append(result, input.Input{Token: visionStartToken, SameBatch: patchesPerChunk + 1})
|
||||
|
||||
// Add the image token with the multimodal tensor data at the first position
|
||||
// Create a chunk with proper s and n values
|
||||
result = append(result, input.Input{
|
||||
Token: imageToken,
|
||||
Multimodal: &chunk{chunks: chunksData, s: 0, n: patchesPerChunk},
|
||||
Multimodal: inp.Multimodal,
|
||||
MultimodalHash: inp.MultimodalHash,
|
||||
SameBatch: patchesPerChunk,
|
||||
})
|
||||
|
||||
// Add the placeholder tokens for the remaining positions (tokensPerGrid-1)
|
||||
|
||||
@@ -129,12 +129,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
|
||||
hiddenStates := m.TokenEmbedding.Forward(ctx, inputs).Duplicate(ctx)
|
||||
|
||||
for _, mi := range batch.Multimodal {
|
||||
f32s := mi.Multimodal.(*chunk).floats()
|
||||
img, err := ctx.Input().FromFloatSlice(f32s, len(f32s)/m.hiddenSize, m.hiddenSize)
|
||||
if err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
img := mi.Multimodal[0].Tensor
|
||||
ctx.Forward(img.Copy(ctx, hiddenStates.View(ctx, mi.Index*hiddenStates.Stride(1), img.Dim(0)*img.Dim(1))))
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user