add gemma vision encoder

This commit is contained in:
Michael Yang
2025-03-06 12:16:54 -08:00
parent 5f74d1fd47
commit 4b037a97dc
10 changed files with 337 additions and 34 deletions

View File

@@ -1,10 +1,15 @@
package gemma3
import (
"fmt"
"bytes"
"encoding/binary"
"hash/fnv"
"image"
"slices"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
@@ -13,19 +18,30 @@ type Model struct {
model.Base
model.SentencePieceModel
//*VisionModel `gguf:"v,vision"`
*VisionModel `gguf:"v,vision"`
*TextModel
//Projector *nn.Linear `gguf:"mm.0"`
*MultiModalProjector `gguf:"mm"`
ImageProcessor
}
var _ model.MultimodalProcessor = (*Model)(nil)
type MultiModalProjector struct {
SoftEmbNorm *nn.RMSNorm `gguf:"mm_soft_emb_norm"`
InputProjection *nn.Linear `gguf:"mm_input_projection"`
}
func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, eps float32) ml.Tensor {
visionOutputs = p.SoftEmbNorm.Forward(ctx, visionOutputs, eps)
// TODO: inputProjection must be transposed since they're incompatible with visionOutputs
visionOutputs = p.InputProjection.Weight.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mulmat(ctx, visionOutputs)
return visionOutputs
}
func New(c ml.Config) (model.Model, error) {
// Verify unified config
if c.Uint("vision.block_count") == 0 {
return nil, fmt.Errorf("non-unified vision model not supported")
}
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
@@ -40,8 +56,8 @@ func New(c ml.Config) (model.Model, error) {
},
),
ImageProcessor: newImageProcessor(c),
//VisionModel: newVisionModel(c),
TextModel: newTextModel(c),
VisionModel: newVisionModel(c),
TextModel: newTextModel(c),
}
slidingWindowLen := int32(c.Uint("text.attention.sliding_window"))
@@ -50,7 +66,78 @@ func New(c ml.Config) (model.Model, error) {
return &m, nil
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
image, _, err := image.Decode(bytes.NewReader(multimodalData))
if err != nil {
return nil, err
}
f32s, err := m.ImageProcessor.ProcessImage(image)
if err != nil {
return nil, err
}
pixelValues, err := ctx.Input().FromFloatSlice(f32s,
m.ImageProcessor.imageSize,
m.ImageProcessor.imageSize,
m.ImageProcessor.numChannels,
)
if err != nil {
return nil, err
}
positionIDs, err := ctx.FromIntSlice([]int32{0}, 1)
if err != nil {
return nil, err
}
visionOutputs := m.VisionModel.Forward(ctx, pixelValues, positionIDs)
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
patchesPerImage := m.ImageProcessor.imageSize / m.ImageProcessor.patchSize
kernelSize := patchesPerImage * patchesPerImage / 256
visionOutputs = visionOutputs.AvgPool1D(ctx, kernelSize, kernelSize, 0)
visionOutputs = visionOutputs.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
visionOutputs = m.MultiModalProjector.Forward(ctx, visionOutputs, m.VisionModel.eps)
return visionOutputs, nil
}
func (m *Model) PostTokenize(ctx ml.Context, inputs []input.Input) ([]input.Input, error) {
var images []input.Input
fnvHash := fnv.New64a()
for i := range inputs {
if inputs[i].Multimodal == nil {
if len(images) > 0 {
inputs[i].Multimodal = images[0].Multimodal
inputs[i].MultimodalHash = images[0].MultimodalHash
for j := 1; j < len(images); j++ {
inputs[i].Multimodal = inputs[i].Multimodal.(ml.Tensor).Concat(ctx, images[j].Multimodal.(ml.Tensor), 3)
fnvHash.Reset()
binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
binary.Write(fnvHash, binary.NativeEndian, inputs[j].MultimodalHash)
inputs[i].MultimodalHash = fnvHash.Sum64()
}
images = nil
}
} else {
images = append(images, inputs[i])
inputs[i].Token = -1
}
}
inputs = slices.DeleteFunc(inputs, func(input input.Input) bool { return input.Token == -1 })
return inputs, nil
}
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
var embeddings ml.Tensor
if opts.Multimodal != nil {
embeddings = opts.Multimodal[0].Multimodal.(ml.Tensor)
}
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
if err != nil {
return nil, err
@@ -66,7 +153,7 @@ func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
return nil, err
}
return m.TextModel.Forward(ctx, inputs, positions, outputs, m.Cache), nil
return m.TextModel.Forward(ctx, inputs, positions, embeddings, outputs, m.Cache), nil
}
func init() {