next ollama runner (#7913)

feat: add new Ollama engine using ggml through cgo

This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.

- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations

This is the first implementation of the new engine. Follow up PRs will implement more features:

- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
This commit is contained in:
Michael Yang
2025-02-14 00:31:21 +00:00
committed by GitHub
parent 8cf16063a5
commit 58245413f4
57 changed files with 475427 additions and 494 deletions

View File

@@ -6,7 +6,7 @@ import (
"slices"
"strings"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
type mixtralModel struct {
@@ -15,7 +15,7 @@ type mixtralModel struct {
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
func (p *mixtralModel) KV(t *Tokenizer) ggml.KV {
kv := p.llamaModel.KV(t)
if p.NumLocalExperts > 0 {
@@ -29,7 +29,7 @@ func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
func (p *mixtralModel) Tensors(ts []Tensor) []ggml.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
@@ -56,10 +56,10 @@ func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
return true
})
var out []llm.Tensor
var out []ggml.Tensor
for n, e := range experts {
// TODO(mxyng): sanity check experts
out = append(out, llm.Tensor{
out = append(out, ggml.Tensor{
Name: n,
Kind: e[0].Kind(),
Shape: append([]uint64{uint64(len(e))}, e[0].Shape()...),