next ollama runner (#7913)

feat: add new Ollama engine using ggml through cgo

This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.

- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations

This is the first implementation of the new engine. Follow up PRs will implement more features:

- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
This commit is contained in:
Michael Yang
2025-02-14 00:31:21 +00:00
committed by GitHub
parent 8cf16063a5
commit 58245413f4
57 changed files with 475427 additions and 494 deletions

575
fs/ggml/ggml.go Normal file
View File

@@ -0,0 +1,575 @@
package ggml
import (
"encoding/binary"
"errors"
"fmt"
"io"
"log/slog"
"slices"
"strings"
"github.com/ollama/ollama/fs/util/bufioutil"
)
type GGML struct {
container
model
}
type model interface {
KV() KV
Tensors() Tensors
}
type KV map[string]any
func (kv KV) Architecture() string {
return kv.String("general.architecture", "unknown")
}
func (kv KV) Kind() string {
return kv.String("general.type", "unknown")
}
func (kv KV) ParameterCount() uint64 {
return keyValue[uint64](kv, "general.parameter_count")
}
func (kv KV) FileType() fileType {
if t := kv.Uint("general.file_type"); t > 0 {
return fileType(t)
}
return fileTypeUnknown
}
func (kv KV) BlockCount() uint64 {
return uint64(kv.Uint("block_count"))
}
func (kv KV) EmbeddingLength() uint64 {
return uint64(kv.Uint("embedding_length"))
}
func (kv KV) HeadCount() uint64 {
return uint64(kv.Uint("attention.head_count"))
}
func (kv KV) HeadCountKV() uint64 {
return uint64(kv.Uint("attention.head_count_kv", 1))
}
func (kv KV) EmbeddingHeadCount() uint64 {
if heads := kv.HeadCount(); heads > 0 {
return kv.EmbeddingLength() / heads
}
return 0
}
func (kv KV) EmbeddingHeadCountK() uint64 {
return uint64(kv.Uint("attention.key_length", uint32(kv.EmbeddingHeadCount())))
}
func (kv KV) EmbeddingHeadCountV() uint64 {
return uint64(kv.Uint("attention.value_length", uint32(kv.EmbeddingHeadCount())))
}
func (kv KV) GQA() uint64 {
return kv.HeadCount() / kv.HeadCountKV()
}
func (kv KV) ContextLength() uint64 {
return uint64(kv.Uint("context_length"))
}
func (kv KV) ChatTemplate() string {
return kv.String("tokenizer.chat_template")
}
func (kv KV) String(key string, defaultValue ...string) string {
return keyValue(kv, key, append(defaultValue, "")...)
}
func (kv KV) Uint(key string, defaultValue ...uint32) uint32 {
return keyValue(kv, key, append(defaultValue, 0)...)
}
func (kv KV) Float(key string, defaultValue ...float32) float32 {
return keyValue(kv, key, append(defaultValue, 0)...)
}
func (kv KV) Strings(key string, defaultValue ...[]string) []string {
r := keyValue(kv, key, &array{})
s := make([]string, r.size)
for i := range r.size {
s[i] = r.values[i].(string)
}
return s
}
func (kv KV) Uints(key string, defaultValue ...[]uint32) []uint32 {
r := keyValue(kv, key, &array{})
s := make([]uint32, r.size)
for i := range r.size {
s[i] = uint32(r.values[i].(int32))
}
return s
}
func keyValue[T string | uint32 | uint64 | float32 | *array](kv KV, key string, defaultValue ...T) T {
if !strings.HasPrefix(key, "tokenizer.") && !strings.HasPrefix(key, "general.") {
key = kv.Architecture() + "." + key
}
if val, ok := kv[key]; ok {
return val.(T)
}
slog.Warn("key not found", "key", key, "default", defaultValue[0])
return defaultValue[0]
}
type Tensors struct {
items []*Tensor
Offset uint64
}
func (s Tensors) Items(prefix ...string) []*Tensor {
if len(prefix) == 0 {
return s.items
}
var items []*Tensor
for _, t := range s.items {
if strings.HasPrefix(t.Name, prefix[0]) {
items = append(items, t)
}
}
return items
}
func (ts Tensors) GroupLayers() map[string]Layer {
layers := make(map[string]Layer)
for _, t := range ts.items {
parts := strings.Split(t.Name, ".")
if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 {
if len(parts) > index+2 {
// blk and mm should have a number after them, join it
parts = append(
[]string{strings.Join(parts[:index+2], ".")},
parts[index+2:]...)
}
}
if _, ok := layers[parts[0]]; !ok {
layers[parts[0]] = make(Layer)
}
layers[parts[0]][strings.Join(parts[1:], ".")] = t
}
return layers
}
type Layer map[string]*Tensor
func (l Layer) Size() (size uint64) {
for _, t := range l {
size += t.Size()
}
return size
}
type Tensor struct {
Name string `json:"name"`
Kind uint32 `json:"kind"`
Offset uint64 `json:"-"`
// Shape is the number of elements in each dimension
Shape []uint64 `json:"shape"`
io.WriterTo `json:"-"`
}
func (t Tensor) block() (n int) {
if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil {
return -1
}
return
}
func (t Tensor) blockSize() uint64 {
switch t.Kind {
case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16
return 1
case 2, 3, 4, 5, 6, 7, 8, 9, 20: // Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, IQ4_NL
return 32
default: // All others
return 256
}
}
func (t Tensor) typeSize() uint64 {
blockSize := t.blockSize()
switch t.Kind {
case 0: // FP32
return 4
case 1: // FP16
return 2
case 2: // Q4_0
return 2 + blockSize/2
case 3: // Q4_1
return 2 + 2 + blockSize/2
case 6: // Q5_0
return 2 + 4 + blockSize/2
case 7: // Q5_1
return 2 + 2 + 4 + blockSize/2
case 8: // Q8_0
return 2 + blockSize
case 9: // Q8_1
return 4 + 4 + blockSize
case 10: // Q2_K
return blockSize/16 + blockSize/4 + 2 + 2
case 11: // Q3_K
return blockSize/8 + blockSize/4 + 12 + 2
case 12: // Q4_K
return 2 + 2 + 12 + blockSize/2
case 13: // Q5_K
return 2 + 2 + 12 + blockSize/8 + blockSize/2
case 14: // Q6_K
return blockSize/2 + blockSize/4 + blockSize/16 + 2
case 15: // Q8_K
return 2 + blockSize + 2*blockSize/16
case 16: // IQ2_XXS
return 2 + 2*blockSize/8
case 17: // IQ2_XS
return 2 + 2*blockSize/8 + blockSize/32
case 18: // IQ3_XXS
return 2 + blockSize/4 + blockSize/8
case 19: // IQ1_S
return 2 + blockSize/8 + blockSize/16
case 20: // IQ4_NL
return 2 + blockSize/2
case 21: // IQ3_S
return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4
case 22: // IQ2_S
return 2 + blockSize/4 + blockSize/16
case 23: // IQ4_XS
return 2 + 2 + blockSize/2 + blockSize/64
case 24: // I8
return 1
case 25: // I16
return 2
case 26: // I32
return 4
case 27: // I64
return 8
case 28: // F64
return 8
case 29: // IQ1_M
return blockSize/8 + blockSize/16 + blockSize/32
default:
return 0
}
}
func (t Tensor) parameters() uint64 {
var count uint64 = 1
for _, n := range t.Shape {
count *= n
}
return count
}
func (t Tensor) Size() uint64 {
return t.parameters() * t.typeSize() / t.blockSize()
}
type container interface {
Name() string
Decode(io.ReadSeeker) (model, error)
}
const (
// Magic constant for `ggml` files (unversioned).
FILE_MAGIC_GGML = 0x67676d6c
// Magic constant for `ggml` files (versioned, ggmf).
FILE_MAGIC_GGMF = 0x67676d66
// Magic constant for `ggml` files (versioned, ggjt).
FILE_MAGIC_GGJT = 0x67676a74
// Magic constant for `ggla` files (LoRA adapter).
FILE_MAGIC_GGLA = 0x67676C61
// Magic constant for `gguf` files (versioned, gguf)
FILE_MAGIC_GGUF_LE = 0x46554747
FILE_MAGIC_GGUF_BE = 0x47475546
)
var ErrUnsupportedFormat = errors.New("unsupported model format")
func DetectContentType(b []byte) string {
switch binary.LittleEndian.Uint32(b[:4]) {
case FILE_MAGIC_GGML:
return "ggml"
case FILE_MAGIC_GGMF:
return "ggmf"
case FILE_MAGIC_GGJT:
return "ggjt"
case FILE_MAGIC_GGLA:
return "ggla"
case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
return "gguf"
default:
return ""
}
}
// Decode decodes a GGML model from the given reader.
//
// It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected.
func Decode(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) {
if maxArraySize == 0 {
maxArraySize = 1024
}
rs = bufioutil.NewBufferedSeeker(rs, 32<<10)
var magic uint32
if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
return nil, 0, err
}
var c container
switch magic {
case FILE_MAGIC_GGUF_LE:
c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize}
case FILE_MAGIC_GGUF_BE:
c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize}
default:
return nil, 0, errors.New("invalid file magic")
}
model, err := c.Decode(rs)
if err != nil {
return nil, 0, err
}
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return nil, 0, err
}
// final model type
return &GGML{
container: c,
model: model,
}, offset, nil
}
func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialOffload, fullOffload uint64) {
embedding := f.KV().EmbeddingLength()
heads := f.KV().HeadCount()
headsKV := f.KV().HeadCountKV()
vocab := uint64(f.KV()["tokenizer.ggml.tokens"].(*array).size)
embeddingHeads := f.KV().EmbeddingHeadCount()
embeddingHeadsK := f.KV().EmbeddingHeadCountK()
embeddingHeadsV := f.KV().EmbeddingHeadCountV()
layers := f.Tensors().GroupLayers()
bytesPerElement := kvCacheBytesPerElement(kvCacheType)
kv = uint64(float64(context*f.KV().BlockCount()*(embeddingHeadsK+embeddingHeadsV)*headsKV) * bytesPerElement)
switch f.KV().Architecture() {
case "llama":
fullOffload = max(
4*batch*(1+4*embedding+context*(1+heads)),
4*batch*(embedding+vocab),
)
partialOffload = 4 * batch * embedding
partialOffload += max(
4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV),
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)
if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
// mixtral 8x22b
ff := uint64(f.KV()["llama.feed_forward_length"].(uint32))
partialOffload = max(
3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV),
4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch),
)
} else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
// mixtral 8x7b
ffnGateWeight1 := ffnGateWeight.Shape[1]
fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
partialOffload = max(
4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
)
}
case "mllama":
var visionTokens, tiles uint64 = 1601, 4
if crossAttentionLayers, ok := f.KV()["mllama.attention.cross_attention_layers"].(*array); ok {
kv = headsKV *
(embeddingHeadsK + embeddingHeadsV) * // one for K, one for V
(2* // sizeof(float16)
(f.KV().BlockCount()-uint64(crossAttentionLayers.size))* // num non-cross attention layers
context +
4* // sizeof(float32)
uint64(crossAttentionLayers.size)* // num cross attention layers
visionTokens*
tiles)
}
fullOffload = max(
4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)),
// vocab graph
4*batch*(embedding+vocab),
)
var ropeFreqsCount uint64
if ropeFreqs, ok := f.Tensors().GroupLayers()["rope_freqs"]; ok {
if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok {
ropeFreqsCount = ropeFreqsWeights.parameters()
}
}
partialOffload = max(
4*(batch*
(2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+
ropeFreqsCount+
embeddingHeadsK*context*headsKV),
// vocab graph
4*batch*(embedding+vocab)+embedding*vocab*105/128,
)
case "gemma", "gemma2":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads),
)
partialOffload = max(
4*embedding*batch+embedding*vocab*105/128+4*vocab*batch,
4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+
4*embeddingHeadsK*context*8+
embedding*embeddingHeadsK*heads*9/16,
)
case "command-r":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(2+4*embedding+context*(1+heads)),
)
partialOffload = max(
4*batch*(embedding+vocab)+embedding*vocab*105/128,
4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
)
case "qwen2":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(1+2*embedding+context+context*heads),
)
partialOffload = max(
4*batch*(embedding+vocab)+embedding*vocab*105/128,
4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
)
case "phi2":
fullOffload = max(
4*batch*(embedding+vocab),
4*batch*(1+4*embedding+context+context*heads),
)
partialOffload = max(
4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
4*batch*(2+3*embedding+context+context*heads),
)
case "stablelm":
fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
partialOffload = max(
4*batch*(vocab+2*embedding),
fullOffload,
)
case "deepseek2":
fullOffload = max(
4*batch*(3*embedding+vocab),
4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV),
)
partialOffload = max(
4*batch*(3*embedding+vocab)+embedding*vocab*105/128,
4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16,
)
case "chatglm":
fullOffload = 4 * batch * (embedding + vocab)
partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128
if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok {
fullOffload = max(
fullOffload,
4*batch*(2+
2*embedding+
context+
context*heads+
embeddingHeadsK*heads+
qkvBias.Shape[0]),
)
partialOffload = max(
partialOffload,
4*batch*(1+
2*embedding+
embeddingHeadsK*heads+
context+
context*heads)+
4*embeddingHeadsK*context+
4*context*embeddingHeadsK+
4*qkvBias.Shape[0],
)
}
}
return
}
// SupportsKVCacheType checks if the requested cache type is supported
func (f GGML) SupportsKVCacheType(cacheType string) bool {
return slices.Contains([]string{"f16", "q8_0", "q4_0"}, cacheType)
}
// SupportsFlashAttention checks if the model supports flash attention
func (f GGML) SupportsFlashAttention() bool {
_, isEmbedding := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]
if isEmbedding {
return false
}
// Check head counts match and are non-zero
headCountK := f.KV().EmbeddingHeadCountK()
headCountV := f.KV().EmbeddingHeadCountV()
return headCountK != 0 && headCountV != 0 && headCountK == headCountV
}
// kvCacheBytesPerElement returns the number of bytes per element for a given KV cache type
func kvCacheBytesPerElement(cacheType string) float64 {
switch cacheType {
case "q8_0":
return 1 // 1/2 of fp16
case "q4_0":
return 0.5 // 1/4 of fp16
default:
return 2 // f16 (default)
}
}

159
fs/ggml/ggml_test.go Normal file
View File

@@ -0,0 +1,159 @@
package ggml
import (
"maps"
"slices"
"strings"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestTensorLayers(t *testing.T) {
tensors := make(map[string]*Tensor)
for _, name := range []string{
"token_embd.weight",
"blk.0.attn_k.weight",
"blk.0.attn_output.weight",
"blk.0.attn_q.weight",
"blk.0.attn_v.weight",
"blk.0.attn_norm.weight",
"blk.0.ffn_down.weight",
"blk.0.ffn_gate.weight",
"blk.0.ffn_up.weight",
"blk.0.ffn_norm.weight",
"output_norm.weight",
"mm.0.bias",
"mm.0.weight",
"v.blk.0.attn_k.weight",
"v.blk.0.attn_output.weight",
"v.blk.0.attn_q.weight",
"v.blk.0.attn_v.weight",
"v.blk.0.attn_norm.weight",
"v.blk.0.ffn_down.weight",
"v.blk.0.ffn_gate.weight",
"v.blk.0.ffn_up.weight",
"v.blk.0.ffn_norm.weight",
"v.patch_embd.weight",
"v.position_embd.gate",
"v.position_embd.weight",
} {
tensors[name] = &Tensor{Name: name}
}
cases := []struct {
name string
items []*Tensor
want map[string]Layer
}{
{
name: "text",
items: slices.Collect(func(yield func(*Tensor) bool) {
for k, v := range tensors {
if !strings.HasPrefix(k, "mm.") && !strings.HasPrefix(k, "v.") {
if !yield(v) {
return
}
}
}
}),
want: map[string]Layer{
"blk.0": {
"attn_k.weight": tensors["blk.0.attn_k.weight"],
"attn_q.weight": tensors["blk.0.attn_q.weight"],
"attn_v.weight": tensors["blk.0.attn_v.weight"],
"attn_output.weight": tensors["blk.0.attn_output.weight"],
"attn_norm.weight": tensors["blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["blk.0.ffn_norm.weight"],
},
"token_embd": {"weight": tensors["token_embd.weight"]},
"output_norm": {"weight": tensors["output_norm.weight"]},
},
},
{
name: "vision",
items: slices.Collect(func(yield func(*Tensor) bool) {
for k, v := range tensors {
if strings.HasPrefix(k, "mm.") || strings.HasPrefix(k, "v.") {
if !yield(v) {
return
}
}
}
}),
want: map[string]Layer{
"mm.0": {
"bias": tensors["mm.0.bias"],
"weight": tensors["mm.0.weight"],
},
"v.blk.0": {
"attn_k.weight": tensors["v.blk.0.attn_k.weight"],
"attn_q.weight": tensors["v.blk.0.attn_q.weight"],
"attn_v.weight": tensors["v.blk.0.attn_v.weight"],
"attn_output.weight": tensors["v.blk.0.attn_output.weight"],
"attn_norm.weight": tensors["v.blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["v.blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["v.blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["v.blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["v.blk.0.ffn_norm.weight"],
},
"v": {
"patch_embd.weight": tensors["v.patch_embd.weight"],
"position_embd.gate": tensors["v.position_embd.gate"],
"position_embd.weight": tensors["v.position_embd.weight"],
},
},
},
{
name: "vision and text",
items: slices.Collect(maps.Values(tensors)),
want: map[string]Layer{
"blk.0": {
"attn_k.weight": tensors["blk.0.attn_k.weight"],
"attn_q.weight": tensors["blk.0.attn_q.weight"],
"attn_v.weight": tensors["blk.0.attn_v.weight"],
"attn_output.weight": tensors["blk.0.attn_output.weight"],
"attn_norm.weight": tensors["blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["blk.0.ffn_norm.weight"],
},
"token_embd": {"weight": tensors["token_embd.weight"]},
"output_norm": {"weight": tensors["output_norm.weight"]},
"mm.0": {
"bias": tensors["mm.0.bias"],
"weight": tensors["mm.0.weight"],
},
"v.blk.0": {
"attn_k.weight": tensors["v.blk.0.attn_k.weight"],
"attn_q.weight": tensors["v.blk.0.attn_q.weight"],
"attn_v.weight": tensors["v.blk.0.attn_v.weight"],
"attn_output.weight": tensors["v.blk.0.attn_output.weight"],
"attn_norm.weight": tensors["v.blk.0.attn_norm.weight"],
"ffn_down.weight": tensors["v.blk.0.ffn_down.weight"],
"ffn_gate.weight": tensors["v.blk.0.ffn_gate.weight"],
"ffn_up.weight": tensors["v.blk.0.ffn_up.weight"],
"ffn_norm.weight": tensors["v.blk.0.ffn_norm.weight"],
},
"v": {
"patch_embd.weight": tensors["v.patch_embd.weight"],
"position_embd.gate": tensors["v.position_embd.gate"],
"position_embd.weight": tensors["v.position_embd.weight"],
},
},
},
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
got := Tensors{items: tt.items}.GroupLayers()
if diff := cmp.Diff(got, tt.want); diff != "" {
t.Errorf("unexpected layers (-got +want):\n%s", diff)
}
})
}
}

661
fs/ggml/gguf.go Normal file
View File

@@ -0,0 +1,661 @@
package ggml
import (
"bytes"
"cmp"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"log/slog"
"maps"
"slices"
"strings"
)
type containerGGUF struct {
ByteOrder binary.ByteOrder
Version uint32
V1 struct {
NumTensor uint32
NumKV uint32
}
V2 struct {
NumTensor uint64
NumKV uint64
}
V3 struct {
NumTensor uint64
NumKV uint64
}
maxArraySize int
}
func (c *containerGGUF) canCollectArray(size int) bool {
return c.maxArraySize < 0 || size <= c.maxArraySize
}
func (c *containerGGUF) Name() string {
return "gguf"
}
func (c *containerGGUF) Decode(rs io.ReadSeeker) (model, error) {
if err := binary.Read(rs, c.ByteOrder, &c.Version); err != nil {
return nil, err
}
var err error
switch c.Version {
case 1:
err = binary.Read(rs, c.ByteOrder, &c.V1)
case 2:
err = binary.Read(rs, c.ByteOrder, &c.V2)
default:
err = binary.Read(rs, c.ByteOrder, &c.V3)
}
if err != nil {
return nil, err
}
model := newGGUF(c)
if err := model.Decode(rs); err != nil {
return nil, err
}
return model, nil
}
const (
ggufTypeUint8 uint32 = iota
ggufTypeInt8
ggufTypeUint16
ggufTypeInt16
ggufTypeUint32
ggufTypeInt32
ggufTypeFloat32
ggufTypeBool
ggufTypeString
ggufTypeArray
ggufTypeUint64
ggufTypeInt64
ggufTypeFloat64
)
type gguf struct {
*containerGGUF
kv KV
tensors []*Tensor
parameters uint64
tensorOffset uint64
scratch [16 << 10]byte
}
func newGGUF(container *containerGGUF) *gguf {
return &gguf{
containerGGUF: container,
kv: make(KV),
}
}
func (llm *gguf) KV() KV {
return llm.kv
}
func (llm *gguf) Tensors() Tensors {
return Tensors{
items: llm.tensors,
Offset: llm.tensorOffset,
}
}
func (llm *gguf) numTensor() uint64 {
switch llm.Version {
case 1:
return uint64(llm.V1.NumTensor)
case 2:
return llm.V2.NumTensor
default:
return llm.V3.NumTensor
}
}
func (llm *gguf) numKV() uint64 {
switch llm.Version {
case 1:
return uint64(llm.V1.NumKV)
case 2:
return llm.V2.NumKV
default:
return llm.V3.NumKV
}
}
func (llm *gguf) Decode(rs io.ReadSeeker) error {
// decode key-values
for i := 0; uint64(i) < llm.numKV(); i++ {
k, err := readGGUFString(llm, rs)
if err != nil {
return err
}
t, err := readGGUF[uint32](llm, rs)
if err != nil {
return err
}
var v any
switch t {
case ggufTypeUint8:
v, err = readGGUF[uint8](llm, rs)
case ggufTypeInt8:
v, err = readGGUF[int8](llm, rs)
case ggufTypeUint16:
v, err = readGGUF[uint16](llm, rs)
case ggufTypeInt16:
v, err = readGGUF[int16](llm, rs)
case ggufTypeUint32:
v, err = readGGUF[uint32](llm, rs)
case ggufTypeInt32:
v, err = readGGUF[int32](llm, rs)
case ggufTypeUint64:
v, err = readGGUF[uint64](llm, rs)
case ggufTypeInt64:
v, err = readGGUF[int64](llm, rs)
case ggufTypeFloat32:
v, err = readGGUF[float32](llm, rs)
case ggufTypeFloat64:
v, err = readGGUF[float64](llm, rs)
case ggufTypeBool:
v, err = readGGUF[bool](llm, rs)
case ggufTypeString:
v, err = readGGUFString(llm, rs)
case ggufTypeArray:
v, err = readGGUFArray(llm, rs)
default:
return fmt.Errorf("invalid type: %d", t)
}
if err != nil {
return err
}
llm.kv[k] = v
}
// decode tensors
for range llm.numTensor() {
name, err := readGGUFString(llm, rs)
if err != nil {
return fmt.Errorf("failed to read tensor name: %w", err)
}
// dims is the number of dimensions in the tensor
dims, err := readGGUF[uint32](llm, rs)
if err != nil {
return fmt.Errorf("failed to read tensor dimensions: %w", err)
}
shape := make([]uint64, dims)
for i := 0; uint32(i) < dims; i++ {
shape[i], err = readGGUF[uint64](llm, rs)
if err != nil {
return fmt.Errorf("failed to read tensor shape: %w", err)
}
}
kind, err := readGGUF[uint32](llm, rs)
if err != nil {
return fmt.Errorf("failed to read tensor kind: %w", err)
}
offset, err := readGGUF[uint64](llm, rs)
if err != nil {
return fmt.Errorf("failed to read tensor offset: %w", err)
}
tensor := Tensor{
Name: name,
Kind: kind,
Offset: offset,
Shape: shape[:],
}
llm.tensors = append(llm.tensors, &tensor)
llm.parameters += tensor.parameters()
}
// patch KV with parameter count
llm.kv["general.parameter_count"] = llm.parameters
alignment, ok := llm.kv["general.alignment"].(uint32)
if !ok {
alignment = 32
}
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
padding := ggufPadding(offset, int64(alignment))
llm.tensorOffset = uint64(offset + padding)
for _, tensor := range llm.tensors {
offset, err := rs.Seek(0, io.SeekCurrent)
if err != nil {
return fmt.Errorf("failed to get current offset: %w", err)
}
padding := ggufPadding(offset, int64(alignment))
if _, err := rs.Seek(padding, io.SeekCurrent); err != nil {
return fmt.Errorf("failed to seek to init padding: %w", err)
}
if _, err := rs.Seek(int64(tensor.Size()), io.SeekCurrent); err != nil {
return fmt.Errorf("failed to seek to tensor: %w", err)
}
}
return nil
}
func readGGUF[T any](llm *gguf, r io.Reader) (T, error) {
var t T
err := binary.Read(r, llm.ByteOrder, &t)
return t, err
}
func writeGGUF[V any](w io.Writer, t uint32, v V) error {
if err := binary.Write(w, binary.LittleEndian, t); err != nil {
return err
}
return binary.Write(w, binary.LittleEndian, v)
}
func readGGUFV1String(llm *gguf, r io.Reader) (string, error) {
var length uint64
if err := binary.Read(r, llm.ByteOrder, &length); err != nil {
return "", err
}
var b bytes.Buffer
if _, err := io.CopyN(&b, r, int64(length)); err != nil {
return "", err
}
// gguf v1 strings are null-terminated
b.Truncate(b.Len() - 1)
return b.String(), nil
}
func discardGGUFString(llm *gguf, r io.Reader) error {
buf := llm.scratch[:8]
_, err := io.ReadFull(r, buf)
if err != nil {
return err
}
size := int(llm.ByteOrder.Uint64(buf))
for size > 0 {
n, err := r.Read(llm.scratch[:min(size, cap(llm.scratch))])
if err != nil {
return err
}
size -= n
}
return nil
}
func readGGUFString(llm *gguf, r io.Reader) (string, error) {
if llm.Version == 1 {
return readGGUFV1String(llm, r)
}
buf := llm.scratch[:8]
_, err := io.ReadFull(r, buf)
if err != nil {
return "", err
}
length := int(llm.ByteOrder.Uint64(buf))
if length > len(llm.scratch) {
buf = make([]byte, length)
} else {
buf = llm.scratch[:length]
}
clear(buf)
_, err = io.ReadFull(r, buf)
if err != nil {
return "", err
}
return string(buf), nil
}
func writeGGUFString(w io.Writer, s string) error {
if err := binary.Write(w, binary.LittleEndian, ggufTypeString); err != nil {
return err
}
if err := binary.Write(w, binary.LittleEndian, uint64(len(s))); err != nil {
return err
}
_, err := io.Copy(w, strings.NewReader(s))
return err
}
type array struct {
size int
values []any
}
func (a *array) MarshalJSON() ([]byte, error) {
return json.Marshal(a.values)
}
func readGGUFV1Array(llm *gguf, r io.Reader) (*array, error) {
t, err := readGGUF[uint32](llm, r)
if err != nil {
return nil, err
}
n, err := readGGUF[uint32](llm, r)
if err != nil {
return nil, err
}
a := &array{size: int(n)}
if llm.canCollectArray(int(n)) {
a.values = make([]any, 0, int(n))
}
for i := range n {
var e any
switch t {
case ggufTypeUint8:
e, err = readGGUF[uint8](llm, r)
case ggufTypeInt8:
e, err = readGGUF[int8](llm, r)
case ggufTypeUint16:
e, err = readGGUF[uint16](llm, r)
case ggufTypeInt16:
e, err = readGGUF[int16](llm, r)
case ggufTypeUint32:
e, err = readGGUF[uint32](llm, r)
case ggufTypeInt32:
e, err = readGGUF[int32](llm, r)
case ggufTypeUint64:
e, err = readGGUF[uint64](llm, r)
case ggufTypeInt64:
e, err = readGGUF[int64](llm, r)
case ggufTypeFloat32:
e, err = readGGUF[float32](llm, r)
case ggufTypeFloat64:
e, err = readGGUF[float64](llm, r)
case ggufTypeBool:
e, err = readGGUF[bool](llm, r)
case ggufTypeString:
e, err = readGGUFV1String(llm, r)
default:
return nil, fmt.Errorf("invalid array type: %d", t)
}
if err != nil {
return nil, err
}
if a.values != nil {
a.values[i] = e
}
}
return a, nil
}
func readGGUFArray(llm *gguf, r io.Reader) (*array, error) {
if llm.Version == 1 {
return readGGUFV1Array(llm, r)
}
t, err := readGGUF[uint32](llm, r)
if err != nil {
return nil, err
}
n, err := readGGUF[uint64](llm, r)
if err != nil {
return nil, err
}
a := &array{size: int(n)}
if llm.canCollectArray(int(n)) {
a.values = make([]any, int(n))
}
for i := range n {
var e any
switch t {
case ggufTypeUint8:
e, err = readGGUF[uint8](llm, r)
case ggufTypeInt8:
e, err = readGGUF[int8](llm, r)
case ggufTypeUint16:
e, err = readGGUF[uint16](llm, r)
case ggufTypeInt16:
e, err = readGGUF[int16](llm, r)
case ggufTypeUint32:
e, err = readGGUF[uint32](llm, r)
case ggufTypeInt32:
e, err = readGGUF[int32](llm, r)
case ggufTypeUint64:
e, err = readGGUF[uint64](llm, r)
case ggufTypeInt64:
e, err = readGGUF[int64](llm, r)
case ggufTypeFloat32:
e, err = readGGUF[float32](llm, r)
case ggufTypeFloat64:
e, err = readGGUF[float64](llm, r)
case ggufTypeBool:
e, err = readGGUF[bool](llm, r)
case ggufTypeString:
if a.values != nil {
e, err = readGGUFString(llm, r)
} else {
err = discardGGUFString(llm, r)
}
default:
return nil, fmt.Errorf("invalid array type: %d", t)
}
if err != nil {
return nil, err
}
if a.values != nil {
a.values[i] = e
}
}
return a, nil
}
// writeGGUFArray writes a slice s of type E to the write with a gguf type of t
func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
if err := binary.Write(w, binary.LittleEndian, ggufTypeArray); err != nil {
return err
}
if err := binary.Write(w, binary.LittleEndian, t); err != nil {
return err
}
if err := binary.Write(w, binary.LittleEndian, uint64(len(s))); err != nil {
return err
}
return binary.Write(w, binary.LittleEndian, s)
}
func WriteGGUF(ws io.WriteSeeker, kv KV, ts []Tensor) error {
if err := binary.Write(ws, binary.LittleEndian, []byte("GGUF")); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint32(3)); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint64(len(ts))); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint64(len(kv))); err != nil {
return err
}
keys := slices.Collect(maps.Keys(kv))
slices.Sort(keys)
for _, key := range keys {
if err := ggufWriteKV(ws, key, kv[key]); err != nil {
return err
}
}
slices.SortStableFunc(ts, func(a, b Tensor) int {
if i, j := a.block(), b.block(); i < 0 && j > 0 {
return 1
} else if i > 0 && j < 0 {
return -1
} else {
return cmp.Compare(i, j)
}
})
var s uint64
for _, t := range ts {
t.Offset = s
if err := ggufWriteTensorInfo(ws, t); err != nil {
return err
}
s += t.Size()
}
var alignment int64 = 32
for _, t := range ts {
if err := ggufWriteTensor(ws, t, alignment); err != nil {
return err
}
}
return nil
}
func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
slog.Debug(k, "type", fmt.Sprintf("%T", v))
if err := binary.Write(ws, binary.LittleEndian, uint64(len(k))); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, []byte(k)); err != nil {
return err
}
var err error
switch v := v.(type) {
case uint32:
err = writeGGUF(ws, ggufTypeUint32, v)
case float32:
err = writeGGUF(ws, ggufTypeFloat32, v)
case bool:
err = writeGGUF(ws, ggufTypeBool, v)
case string:
err = writeGGUFString(ws, v)
case []int32:
err = writeGGUFArray(ws, ggufTypeInt32, v)
case []uint32:
err = writeGGUFArray(ws, ggufTypeUint32, v)
case []float32:
err = writeGGUFArray(ws, ggufTypeFloat32, v)
case []string:
if err := binary.Write(ws, binary.LittleEndian, ggufTypeArray); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, ggufTypeString); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint64(len(v))); err != nil {
return err
}
for _, e := range v {
if err := binary.Write(ws, binary.LittleEndian, uint64(len(e))); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, []byte(e)); err != nil {
return err
}
}
default:
return fmt.Errorf("improper type for '%s'", k)
}
return err
}
func ggufWriteTensorInfo(ws io.WriteSeeker, t Tensor) error {
slog.Debug(t.Name, "kind", t.Kind, "shape", t.Shape, "offset", t.Offset)
if err := binary.Write(ws, binary.LittleEndian, uint64(len(t.Name))); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, []byte(t.Name)); err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, uint32(len(t.Shape))); err != nil {
return err
}
for i := range len(t.Shape) {
if err := binary.Write(ws, binary.LittleEndian, t.Shape[len(t.Shape)-i-1]); err != nil {
return err
}
}
if err := binary.Write(ws, binary.LittleEndian, t.Kind); err != nil {
return err
}
return binary.Write(ws, binary.LittleEndian, t.Offset)
}
func ggufWriteTensor(ws io.WriteSeeker, t Tensor, alignment int64) error {
offset, err := ws.Seek(0, io.SeekCurrent)
if err != nil {
return err
}
if err := binary.Write(ws, binary.LittleEndian, bytes.Repeat([]byte{0}, int(ggufPadding(offset, alignment)))); err != nil {
return err
}
_, err = t.WriteTo(ws)
return err
}
func ggufPadding(offset, align int64) int64 {
return (align - offset%align) % align
}

185
fs/ggml/type.go Normal file
View File

@@ -0,0 +1,185 @@
package ggml
import "fmt"
type fileType uint32
const (
fileTypeF32 fileType = iota
fileTypeF16
fileTypeQ4_0
fileTypeQ4_1
fileTypeQ4_1_F16
fileTypeQ4_2 // unused
fileTypeQ4_3 // unused
fileTypeQ8_0
fileTypeQ5_0
fileTypeQ5_1
fileTypeQ2_K
fileTypeQ3_K_S
fileTypeQ3_K_M
fileTypeQ3_K_L
fileTypeQ4_K_S
fileTypeQ4_K_M
fileTypeQ5_K_S
fileTypeQ5_K_M
fileTypeQ6_K
fileTypeIQ2_XXS
fileTypeIQ2_XS
fileTypeQ2_K_S
fileTypeIQ3_XS
fileTypeIQ3_XXS
fileTypeIQ1_S
fileTypeIQ4_NL
fileTypeIQ3_S
fileTypeIQ3_M
fileTypeIQ2_S
fileTypeIQ2_M
fileTypeIQ4_XS
fileTypeIQ1_M
fileTypeBF16
fileTypeUnknown
)
func ParseFileType(s string) (fileType, error) {
switch s {
case "F32":
return fileTypeF32, nil
case "F16":
return fileTypeF16, nil
case "Q4_0":
return fileTypeQ4_0, nil
case "Q4_1":
return fileTypeQ4_1, nil
case "Q4_1_F16":
return fileTypeQ4_1_F16, nil
case "Q8_0":
return fileTypeQ8_0, nil
case "Q5_0":
return fileTypeQ5_0, nil
case "Q5_1":
return fileTypeQ5_1, nil
case "Q2_K":
return fileTypeQ2_K, nil
case "Q3_K_S":
return fileTypeQ3_K_S, nil
case "Q3_K_M":
return fileTypeQ3_K_M, nil
case "Q3_K_L":
return fileTypeQ3_K_L, nil
case "Q4_K_S":
return fileTypeQ4_K_S, nil
case "Q4_K_M":
return fileTypeQ4_K_M, nil
case "Q5_K_S":
return fileTypeQ5_K_S, nil
case "Q5_K_M":
return fileTypeQ5_K_M, nil
case "Q6_K":
return fileTypeQ6_K, nil
case "IQ2_XXS":
return fileTypeIQ2_XXS, nil
case "IQ2_XS":
return fileTypeIQ2_XS, nil
case "Q2_K_S":
return fileTypeQ2_K_S, nil
case "IQ3_XS":
return fileTypeIQ3_XS, nil
case "IQ3_XXS":
return fileTypeIQ3_XXS, nil
case "IQ1_S":
return fileTypeIQ1_S, nil
case "IQ4_NL":
return fileTypeIQ4_NL, nil
case "IQ3_S":
return fileTypeIQ3_S, nil
case "IQ3_M":
return fileTypeIQ3_M, nil
case "IQ2_S":
return fileTypeIQ2_S, nil
case "IQ2_M":
return fileTypeIQ2_M, nil
case "IQ4_XS":
return fileTypeIQ4_XS, nil
case "IQ1_M":
return fileTypeIQ1_M, nil
case "BF16":
return fileTypeBF16, nil
default:
return fileTypeUnknown, fmt.Errorf("unknown fileType: %s", s)
}
}
func (t fileType) String() string {
switch t {
case fileTypeF32:
return "F32"
case fileTypeF16:
return "F16"
case fileTypeQ4_0:
return "Q4_0"
case fileTypeQ4_1:
return "Q4_1"
case fileTypeQ4_1_F16:
return "Q4_1_F16"
case fileTypeQ8_0:
return "Q8_0"
case fileTypeQ5_0:
return "Q5_0"
case fileTypeQ5_1:
return "Q5_1"
case fileTypeQ2_K:
return "Q2_K"
case fileTypeQ3_K_S:
return "Q3_K_S"
case fileTypeQ3_K_M:
return "Q3_K_M"
case fileTypeQ3_K_L:
return "Q3_K_L"
case fileTypeQ4_K_S:
return "Q4_K_S"
case fileTypeQ4_K_M:
return "Q4_K_M"
case fileTypeQ5_K_S:
return "Q5_K_S"
case fileTypeQ5_K_M:
return "Q5_K_M"
case fileTypeQ6_K:
return "Q6_K"
case fileTypeIQ2_XXS:
return "IQ2_XXS"
case fileTypeIQ2_XS:
return "IQ2_XS"
case fileTypeQ2_K_S:
return "Q2_K_S"
case fileTypeIQ3_XS:
return "IQ3_XS"
case fileTypeIQ3_XXS:
return "IQ3_XXS"
case fileTypeIQ1_S:
return "IQ1_S"
case fileTypeIQ4_NL:
return "IQ4_NL"
case fileTypeIQ3_S:
return "IQ3_S"
case fileTypeIQ3_M:
return "IQ3_M"
case fileTypeIQ2_S:
return "IQ2_S"
case fileTypeIQ4_XS:
return "IQ4_XS"
case fileTypeIQ2_M:
return "IQ2_M"
case fileTypeIQ1_M:
return "IQ1_M"
case fileTypeBF16:
return "BF16"
default:
return "unknown"
}
}
func (t fileType) Value() uint32 {
return uint32(t)
}

View File

@@ -0,0 +1,34 @@
package bufioutil
import (
"bufio"
"io"
)
type BufferedSeeker struct {
rs io.ReadSeeker
br *bufio.Reader
}
func NewBufferedSeeker(rs io.ReadSeeker, size int) *BufferedSeeker {
return &BufferedSeeker{
rs: rs,
br: bufio.NewReaderSize(rs, size),
}
}
func (b *BufferedSeeker) Read(p []byte) (int, error) {
return b.br.Read(p)
}
func (b *BufferedSeeker) Seek(offset int64, whence int) (int64, error) {
if whence == io.SeekCurrent {
offset -= int64(b.br.Buffered())
}
n, err := b.rs.Seek(offset, whence)
if err != nil {
return 0, err
}
b.br.Reset(b.rs)
return n, nil
}

View File

@@ -0,0 +1,64 @@
package bufioutil
import (
"bytes"
"io"
"strings"
"testing"
)
func TestBufferedSeeker(t *testing.T) {
const alphabet = "abcdefghijklmnopqrstuvwxyz"
bs := NewBufferedSeeker(strings.NewReader(alphabet), 0) // minReadBufferSize = 16
checkRead := func(buf []byte, expected string) {
t.Helper()
_, err := bs.Read(buf)
if err != nil {
t.Fatal(err)
}
if !bytes.Equal(buf, []byte(expected)) {
t.Fatalf("expected %s, got %s", expected, buf)
}
}
// Read the first 5 bytes
buf := make([]byte, 5)
checkRead(buf, "abcde")
// Seek back to the beginning
_, err := bs.Seek(0, io.SeekStart)
if err != nil {
t.Fatal(err)
}
// read 'a'
checkRead(buf[:1], "a")
if bs.br.Buffered() == 0 {
t.Fatalf("totally unexpected sanity check failed")
}
// Seek past 'b'
_, err = bs.Seek(1, io.SeekCurrent)
if err != nil {
t.Fatal(err)
}
checkRead(buf, "cdefg")
// Seek back to the beginning
_, err = bs.Seek(0, io.SeekStart)
if err != nil {
t.Fatal(err)
}
checkRead(buf, "abcde")
// Seek to the end
_, err = bs.Seek(-5, io.SeekEnd)
if err != nil {
t.Fatal(err)
}
checkRead(buf, "vwxyz")
}