mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-11 00:07:07 +00:00
next ollama runner (#7913)
feat: add new Ollama engine using ggml through cgo This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this. - `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go` - `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go` - `ml.Tensor` defines the interface for a tensor and tensor operations This is the first implementation of the new engine. Follow up PRs will implement more features: - non-greedy sampling (#8410) - integration with Ollama and KV caching (#8301) - more model support (#9080) with more coming soon Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
This commit is contained in:
@@ -11,18 +11,19 @@ import (
|
||||
"github.com/ollama/ollama/discover"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
)
|
||||
|
||||
// This algorithm looks for a complete fit to determine if we need to unload other models
|
||||
func PredictServerFit(allGpus discover.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
|
||||
func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
|
||||
// Split up the GPUs by type and try them
|
||||
var estimatedVRAM uint64
|
||||
for _, gpus := range allGpus.ByLibrary() {
|
||||
var layerCount int
|
||||
estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
|
||||
estimate := EstimateGPULayers(gpus, f, projectors, opts)
|
||||
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
|
||||
if opts.NumGPU < 0 {
|
||||
if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) {
|
||||
if layerCount > 0 && layerCount >= int(f.KV().BlockCount()+1) {
|
||||
return true, estimatedVRAM
|
||||
}
|
||||
} else {
|
||||
@@ -70,7 +71,7 @@ type MemoryEstimate struct {
|
||||
|
||||
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
|
||||
// The GPUs provided must all be the same Library
|
||||
func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string, opts api.Options) MemoryEstimate {
|
||||
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options) MemoryEstimate {
|
||||
// Graph size for a partial offload, applies to all GPUs
|
||||
var graphPartialOffload uint64
|
||||
|
||||
@@ -115,33 +116,31 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
opts.NumCtx = max(opts.NumCtx, 2048)
|
||||
}
|
||||
|
||||
layers := ggml.Tensors().Layers()
|
||||
layers := f.Tensors().GroupLayers()
|
||||
// add one layer worth of memory as a buffer
|
||||
if blk0, ok := layers["blk.0"]; ok {
|
||||
layerSize = blk0.size()
|
||||
layerSize = blk0.Size()
|
||||
} else {
|
||||
slog.Warn("model missing blk.0 layer size")
|
||||
}
|
||||
|
||||
fa := envconfig.FlashAttention() &&
|
||||
discover.GetGPUInfo().FlashAttentionSupported() &&
|
||||
ggml.SupportsFlashAttention()
|
||||
|
||||
var kvct string
|
||||
if fa {
|
||||
if envconfig.FlashAttention() &&
|
||||
discover.GetGPUInfo().FlashAttentionSupported() &&
|
||||
f.SupportsFlashAttention() {
|
||||
requested := strings.ToLower(envconfig.KvCacheType())
|
||||
if requested != "" && ggml.SupportsKVCacheType(requested) {
|
||||
if requested != "" && f.SupportsKVCacheType(requested) {
|
||||
kvct = requested
|
||||
}
|
||||
}
|
||||
|
||||
kv, graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), kvct)
|
||||
kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), kvct)
|
||||
|
||||
// KV is proportional to the number of layers
|
||||
layerSize += kv / ggml.KV().BlockCount()
|
||||
layerSize += kv / f.KV().BlockCount()
|
||||
|
||||
if graphPartialOffload == 0 {
|
||||
graphPartialOffload = ggml.KV().GQA() * kv / 6
|
||||
graphPartialOffload = f.KV().GQA() * kv / 6
|
||||
}
|
||||
if graphFullOffload == 0 {
|
||||
graphFullOffload = graphPartialOffload
|
||||
@@ -156,12 +155,12 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
}
|
||||
|
||||
if layer, ok := layers["output_norm"]; ok {
|
||||
memoryLayerOutput += layer.size()
|
||||
memoryLayerOutput += layer.Size()
|
||||
}
|
||||
if layer, ok := layers["output"]; ok {
|
||||
memoryLayerOutput += layer.size()
|
||||
memoryLayerOutput += layer.Size()
|
||||
} else if layer, ok := layers["token_embd"]; ok {
|
||||
memoryLayerOutput += layer.size()
|
||||
memoryLayerOutput += layer.Size()
|
||||
}
|
||||
|
||||
// Output layer handled at the end if we have space
|
||||
@@ -211,11 +210,11 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
}
|
||||
|
||||
// For all the layers, find where they can fit on the GPU(s)
|
||||
for i := range int(ggml.KV().BlockCount()) {
|
||||
for i := range int(f.KV().BlockCount()) {
|
||||
// Some models have inconsistent layer sizes
|
||||
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
|
||||
layerSize = blk.size()
|
||||
layerSize += kv / ggml.KV().BlockCount()
|
||||
layerSize = blk.Size()
|
||||
layerSize += kv / f.KV().BlockCount()
|
||||
}
|
||||
memoryWeights += layerSize
|
||||
|
||||
@@ -238,10 +237,10 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
}
|
||||
}
|
||||
}
|
||||
if layerCount >= int(ggml.KV().BlockCount()) {
|
||||
if layerCount >= int(f.KV().BlockCount()) {
|
||||
fullyLoaded = true
|
||||
} else {
|
||||
for i := layerCount; i < int(ggml.KV().BlockCount()); i++ {
|
||||
for i := layerCount; i < int(f.KV().BlockCount()); i++ {
|
||||
overflow += layerSize
|
||||
}
|
||||
}
|
||||
@@ -259,7 +258,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
}
|
||||
}
|
||||
|
||||
if layerCount < int(ggml.KV().BlockCount())+1 {
|
||||
if layerCount < int(f.KV().BlockCount())+1 {
|
||||
fullyLoaded = false
|
||||
overflow += memoryLayerOutput
|
||||
}
|
||||
@@ -311,7 +310,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
|
||||
inferenceLibrary: gpus[0].Library,
|
||||
layersRequested: opts.NumGPU,
|
||||
layersModel: int(ggml.KV().BlockCount()) + 1,
|
||||
layersModel: int(f.KV().BlockCount()) + 1,
|
||||
availableList: availableList,
|
||||
kv: kv,
|
||||
allocationsList: allocationsList,
|
||||
@@ -339,22 +338,9 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
|
||||
return estimate
|
||||
}
|
||||
|
||||
func (m MemoryEstimate) log() {
|
||||
overhead := envconfig.GpuOverhead()
|
||||
|
||||
log := slog.With()
|
||||
if m.projectorWeights > 0 {
|
||||
log = log.With(
|
||||
slog.Group(
|
||||
"projector",
|
||||
"weights", format.HumanBytes2(m.projectorWeights),
|
||||
"graph", format.HumanBytes2(m.projectorGraph),
|
||||
),
|
||||
)
|
||||
}
|
||||
|
||||
log.Info(
|
||||
"offload to "+m.inferenceLibrary,
|
||||
func (m MemoryEstimate) LogValue() slog.Value {
|
||||
attrs := []slog.Attr{
|
||||
slog.String("library", m.inferenceLibrary),
|
||||
slog.Group(
|
||||
"layers",
|
||||
// requested number of layers to offload
|
||||
@@ -370,7 +356,7 @@ func (m MemoryEstimate) log() {
|
||||
"memory",
|
||||
// memory available by GPU for offloading
|
||||
"available", m.availableList,
|
||||
"gpu_overhead", format.HumanBytes2(overhead),
|
||||
"gpu_overhead", format.HumanBytes2(envconfig.GpuOverhead()),
|
||||
slog.Group(
|
||||
"required",
|
||||
// memory required for full offloading
|
||||
@@ -399,7 +385,17 @@ func (m MemoryEstimate) log() {
|
||||
"partial", format.HumanBytes2(m.graphPartialOffload),
|
||||
),
|
||||
),
|
||||
)
|
||||
}
|
||||
|
||||
if m.projectorWeights > 0 {
|
||||
attrs = append(attrs, slog.Group(
|
||||
"projector",
|
||||
"weights", format.HumanBytes2(m.projectorWeights),
|
||||
"graph", format.HumanBytes2(m.projectorGraph),
|
||||
))
|
||||
}
|
||||
|
||||
return slog.GroupValue(attrs...)
|
||||
}
|
||||
|
||||
func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
|
||||
@@ -409,13 +405,13 @@ func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
|
||||
}
|
||||
defer file.Close()
|
||||
|
||||
ggml, _, err := DecodeGGML(file, 0)
|
||||
ggml, _, err := ggml.Decode(file, 0)
|
||||
if err != nil {
|
||||
return 0, 0
|
||||
}
|
||||
|
||||
for _, layer := range ggml.Tensors().Layers() {
|
||||
weights += layer.size()
|
||||
for _, layer := range ggml.Tensors().GroupLayers() {
|
||||
weights += layer.Size()
|
||||
}
|
||||
|
||||
switch arch := ggml.KV().Architecture(); arch {
|
||||
@@ -435,7 +431,7 @@ func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
|
||||
headCount := kv("attention.head_count")
|
||||
|
||||
numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
|
||||
if _, ok := ggml.Tensors().Layers()["v"]["class_embd"]; ok {
|
||||
if _, ok := ggml.Tensors().GroupLayers()["v"]["class_embd"]; ok {
|
||||
numPatches++
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user