mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-11 08:17:03 +00:00
next ollama runner (#7913)
feat: add new Ollama engine using ggml through cgo This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this. - `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go` - `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go` - `ml.Tensor` defines the interface for a tensor and tensor operations This is the first implementation of the new engine. Follow up PRs will implement more features: - non-greedy sampling (#8410) - integration with Ollama and KV caching (#8301) - more model support (#9080) with more coming soon Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
This commit is contained in:
580
ml/backend/ggml/ggml.go
Normal file
580
ml/backend/ggml/ggml.go
Normal file
@@ -0,0 +1,580 @@
|
||||
package ggml
|
||||
|
||||
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
|
||||
// #include <stdlib.h>
|
||||
// #include <stdint.h>
|
||||
// #include "ggml.h"
|
||||
// #include "ggml-cpu.h"
|
||||
// #include "ggml-backend.h"
|
||||
import "C"
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"os"
|
||||
"sync"
|
||||
"unsafe"
|
||||
|
||||
"github.com/ollama/ollama/format"
|
||||
fs "github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"golang.org/x/sync/errgroup"
|
||||
|
||||
"github.com/ollama/ollama/ml/backend/ggml/ggml/src"
|
||||
)
|
||||
|
||||
type device struct {
|
||||
d *C.struct_ggml_backend_device
|
||||
}
|
||||
|
||||
func (d device) LogValue() slog.Value {
|
||||
var free, total uint64
|
||||
C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))
|
||||
|
||||
kind := "unknown"
|
||||
switch C.ggml_backend_dev_type(d.d) {
|
||||
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
|
||||
kind = "cpu"
|
||||
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
|
||||
kind = "gpu"
|
||||
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
||||
kind = "accel"
|
||||
}
|
||||
|
||||
return slog.GroupValue(
|
||||
slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
|
||||
slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
|
||||
slog.String("kind", kind),
|
||||
slog.String("free", format.HumanBytes2(free)),
|
||||
slog.String("total", format.HumanBytes2(total)),
|
||||
)
|
||||
}
|
||||
|
||||
var devices = sync.OnceValue(func() []device {
|
||||
ggml.OnceLoad()
|
||||
|
||||
s := make([]device, C.ggml_backend_dev_count())
|
||||
for i := range s {
|
||||
s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
|
||||
}
|
||||
|
||||
return s
|
||||
})
|
||||
|
||||
type Backend struct {
|
||||
meta *fs.GGML
|
||||
cpus, gpus []Context
|
||||
tensors map[string]*Context
|
||||
}
|
||||
|
||||
func New(r *os.File) (ml.Backend, error) {
|
||||
meta, n, err := fs.Decode(r, -1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
slog.Info(
|
||||
"",
|
||||
"architecture", meta.KV().Architecture(),
|
||||
"file_type", meta.KV().FileType(),
|
||||
"name", meta.KV().String("general.name"),
|
||||
"description", meta.KV().String("general.description"),
|
||||
"num_tensors", len(meta.Tensors().Items()),
|
||||
"num_key_values", len(meta.KV()),
|
||||
)
|
||||
|
||||
var cpus, gpus []Context
|
||||
for _, d := range devices() {
|
||||
switch C.ggml_backend_dev_type(d.d) {
|
||||
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
|
||||
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
||||
slog.Info("cpu", "device", d)
|
||||
cpus = append(cpus, Context{
|
||||
ctx: C.ggml_init(C.struct_ggml_init_params{
|
||||
mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
|
||||
no_alloc: true,
|
||||
}),
|
||||
backend: C.ggml_backend_dev_init(d.d, nil),
|
||||
})
|
||||
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
|
||||
slog.Info("gpu", "device", d)
|
||||
gpus = append(gpus, Context{
|
||||
ctx: C.ggml_init(C.struct_ggml_init_params{
|
||||
mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
|
||||
no_alloc: true,
|
||||
}),
|
||||
backend: C.ggml_backend_dev_init(d.d, nil),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
ctxFunc := func(s []Context) (*Context, error) {
|
||||
for _, e := range s {
|
||||
return &e, nil
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf("no devices available")
|
||||
}
|
||||
|
||||
tensors := make(map[*fs.Tensor]*Context, len(meta.Tensors().Items()))
|
||||
for _, t := range meta.Tensors().Items() {
|
||||
c, err := ctxFunc(append(gpus, cpus...))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
func() {
|
||||
tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
|
||||
|
||||
cname := C.CString(t.Name)
|
||||
defer C.free(unsafe.Pointer(cname))
|
||||
C.ggml_set_name(tt, cname)
|
||||
|
||||
tensors[t] = c
|
||||
}()
|
||||
}
|
||||
|
||||
for _, b := range append(gpus, cpus...) {
|
||||
C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
|
||||
}
|
||||
|
||||
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
|
||||
|
||||
var g errgroup.Group
|
||||
for t, c := range tensors {
|
||||
g.Go(func() error {
|
||||
bts := make([]byte, t.Size())
|
||||
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if n != int(t.Size()) {
|
||||
return fmt.Errorf("expected %d bytes, got %d", t.Size(), n)
|
||||
}
|
||||
|
||||
cname := C.CString(t.Name)
|
||||
defer C.free(unsafe.Pointer(cname))
|
||||
|
||||
C.ggml_backend_tensor_set(C.ggml_get_tensor(c.ctx, cname), unsafe.Pointer(&bts[0]), 0, C.size_t(n))
|
||||
return nil
|
||||
})
|
||||
}
|
||||
|
||||
if err := g.Wait(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
return &Backend{
|
||||
meta: meta,
|
||||
cpus: cpus,
|
||||
gpus: gpus,
|
||||
}, nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
ml.RegisterBackend("ggml", New)
|
||||
}
|
||||
|
||||
func (b *Backend) Config() ml.Config {
|
||||
return b.meta.KV()
|
||||
}
|
||||
|
||||
func (b *Backend) Get(name string) ml.Tensor {
|
||||
cname := C.CString(name)
|
||||
defer C.free(unsafe.Pointer(cname))
|
||||
|
||||
for _, c := range append(b.gpus, b.cpus...) {
|
||||
if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
|
||||
return &Tensor{t: t}
|
||||
}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (b *Backend) NewContext() ml.Context {
|
||||
nodes := max(8192, len(b.meta.Tensors().Items())*5)
|
||||
bts := make([]byte, C.size_t(nodes)*C.ggml_tensor_overhead()+C.ggml_graph_overhead_custom(C.size_t(nodes), false))
|
||||
c := C.ggml_init(C.struct_ggml_init_params{
|
||||
mem_buffer: unsafe.Pointer(&bts[0]),
|
||||
mem_size: C.size_t(len(bts)),
|
||||
no_alloc: true,
|
||||
})
|
||||
|
||||
backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
|
||||
bufts := make([]*C.struct_ggml_backend_buffer_type, len(b.gpus)+len(b.cpus))
|
||||
for i, c := range append(b.gpus, b.cpus...) {
|
||||
backends[i] = c.backend
|
||||
bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
|
||||
}
|
||||
|
||||
return &Context{
|
||||
ctx: c,
|
||||
backend: backends[0],
|
||||
nodes: nodes,
|
||||
sched: C.ggml_backend_sched_new(
|
||||
(*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
|
||||
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
|
||||
C.int(len(backends)),
|
||||
C.size_t(nodes),
|
||||
true,
|
||||
),
|
||||
}
|
||||
}
|
||||
|
||||
type Context struct {
|
||||
ctx *C.struct_ggml_context
|
||||
backend *C.struct_ggml_backend
|
||||
|
||||
sched *C.struct_ggml_backend_sched
|
||||
graph *C.struct_ggml_cgraph
|
||||
nodes int
|
||||
}
|
||||
|
||||
func (c *Context) Forward(t ml.Tensor) {
|
||||
if c.graph == nil {
|
||||
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
|
||||
}
|
||||
|
||||
C.ggml_build_forward_expand(c.graph, t.(*Tensor).t)
|
||||
}
|
||||
|
||||
func (c *Context) Compute(t ml.Tensor) ml.Tensor {
|
||||
c.Forward(t)
|
||||
C.ggml_backend_sched_graph_compute_async(c.sched, c.graph)
|
||||
|
||||
backend := C.ggml_backend_sched_get_tensor_backend(c.sched, t.(*Tensor).t)
|
||||
|
||||
t.(*Tensor).data = make([]byte, C.ggml_nbytes(t.(*Tensor).t))
|
||||
C.ggml_backend_tensor_get_async(backend, t.(*Tensor).t, unsafe.Pointer(&t.(*Tensor).data[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
|
||||
return t
|
||||
}
|
||||
|
||||
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
if len(shape) < 1 || len(shape) > 4 {
|
||||
panic("unsupported number of dimensions")
|
||||
}
|
||||
|
||||
for _, dim := range shape {
|
||||
if dim < 1 {
|
||||
panic("invalid shape")
|
||||
}
|
||||
}
|
||||
|
||||
var t *C.struct_ggml_tensor
|
||||
switch dtype {
|
||||
case ml.DTypeF32:
|
||||
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
|
||||
case ml.DTypeI32:
|
||||
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
|
||||
default:
|
||||
panic("unsupported dtype")
|
||||
}
|
||||
|
||||
b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
|
||||
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
|
||||
C.ggml_set_zero(t)
|
||||
return &Tensor{t: t}
|
||||
}
|
||||
|
||||
func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
|
||||
n := len(s)
|
||||
for _, v := range shape {
|
||||
n /= v
|
||||
}
|
||||
|
||||
if n != 1 {
|
||||
return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
|
||||
}
|
||||
|
||||
t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
|
||||
b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
|
||||
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
|
||||
C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
|
||||
return &Tensor{t: t}, nil
|
||||
}
|
||||
|
||||
func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
|
||||
return fromSlice(c, s, shape, C.GGML_TYPE_F32)
|
||||
}
|
||||
|
||||
func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
|
||||
return fromSlice(c, s, shape, C.GGML_TYPE_I32)
|
||||
}
|
||||
|
||||
func (c *Context) Close() error {
|
||||
C.ggml_backend_sched_free(c.sched)
|
||||
C.ggml_free(c.ctx)
|
||||
return nil
|
||||
}
|
||||
|
||||
type Tensor struct {
|
||||
t *C.struct_ggml_tensor
|
||||
data []byte
|
||||
}
|
||||
|
||||
func (t *Tensor) LogValue() slog.Value {
|
||||
return slog.GroupValue(
|
||||
slog.String("name", C.GoString(C.ggml_get_name(t.t))),
|
||||
slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
|
||||
slog.Any("shape", t.Shape()),
|
||||
)
|
||||
}
|
||||
|
||||
func (t *Tensor) Dim(n int) int64 {
|
||||
return int64(t.t.ne[n])
|
||||
}
|
||||
|
||||
func (t *Tensor) Stride(n int) int64 {
|
||||
return int64(t.t.nb[n])
|
||||
}
|
||||
|
||||
func (t *Tensor) Shape() []int64 {
|
||||
shape := make([]int64, C.ggml_n_dims(t.t))
|
||||
for i := range shape {
|
||||
shape[i] = t.Dim(i)
|
||||
}
|
||||
|
||||
return shape
|
||||
}
|
||||
|
||||
func (t *Tensor) Bytes() []byte {
|
||||
if bts := C.ggml_get_data(t.t); bts != nil {
|
||||
return C.GoBytes(bts, C.int(C.ggml_nbytes(t.t)))
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (t *Tensor) Floats() (f32s []float32) {
|
||||
if t.data != nil {
|
||||
f32s = make([]float32, C.ggml_nelements(t.t))
|
||||
_ = binary.Read(bytes.NewReader(t.data), binary.LittleEndian, f32s)
|
||||
}
|
||||
|
||||
return
|
||||
}
|
||||
|
||||
func (t *Tensor) DType() ml.DType {
|
||||
switch t.t._type {
|
||||
case C.GGML_TYPE_F32:
|
||||
return ml.DTypeF32
|
||||
case C.GGML_TYPE_I32:
|
||||
return ml.DTypeI32
|
||||
default:
|
||||
return ml.DTypeOther
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
return &Tensor{
|
||||
t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
|
||||
if len(s) > 0 {
|
||||
return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
|
||||
}
|
||||
|
||||
return t
|
||||
}
|
||||
|
||||
func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
|
||||
return &Tensor{
|
||||
t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
|
||||
return &Tensor{
|
||||
t: C.ggml_cont(ctx.(*Context).ctx, t.t),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
return &Tensor{
|
||||
t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
return &Tensor{
|
||||
t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
|
||||
tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
|
||||
if b != nil {
|
||||
tt = tt.Add(ctx, b)
|
||||
}
|
||||
|
||||
return tt
|
||||
}
|
||||
|
||||
func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
|
||||
return (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
|
||||
}
|
||||
|
||||
func (t *Tensor) Pad(ctx ml.Context, shape ...int64) ml.Tensor {
|
||||
if len(shape) != 4 {
|
||||
panic("expected 4 dimensions")
|
||||
}
|
||||
|
||||
return &Tensor{
|
||||
t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
|
||||
if len(shape) != 4 {
|
||||
panic("expected 4 dimensions")
|
||||
}
|
||||
|
||||
return &Tensor{
|
||||
t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
return &Tensor{
|
||||
t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
||||
return &Tensor{
|
||||
t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Reshape(ctx ml.Context, shape ...int64) ml.Tensor {
|
||||
switch len(shape) {
|
||||
case 1:
|
||||
return &Tensor{
|
||||
t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
|
||||
}
|
||||
case 2:
|
||||
return &Tensor{
|
||||
t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
|
||||
}
|
||||
case 3:
|
||||
return &Tensor{
|
||||
t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
|
||||
}
|
||||
case 4:
|
||||
return &Tensor{
|
||||
t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
|
||||
}
|
||||
default:
|
||||
panic("unsupported number of dimensions")
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
|
||||
return &Tensor{
|
||||
t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
|
||||
return &Tensor{
|
||||
t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
|
||||
return &Tensor{
|
||||
t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Unpad(ctx ml.Context, shape ...int64) ml.Tensor {
|
||||
if len(shape) != 4 {
|
||||
panic("expected 4 dimensions")
|
||||
}
|
||||
|
||||
return &Tensor{
|
||||
t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
||||
switch len(shape) {
|
||||
case 1:
|
||||
return &Tensor{
|
||||
t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
|
||||
}
|
||||
case 3:
|
||||
return &Tensor{
|
||||
t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
|
||||
C.int64_t(shape[0]), C.int64_t(shape[2]),
|
||||
C.size_t(shape[1]),
|
||||
C.size_t(offset)),
|
||||
}
|
||||
case 5:
|
||||
return &Tensor{
|
||||
t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
|
||||
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
|
||||
C.size_t(shape[1]), C.size_t(shape[3]),
|
||||
C.size_t(offset)),
|
||||
}
|
||||
case 7:
|
||||
return &Tensor{
|
||||
t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
|
||||
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
|
||||
C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
|
||||
C.size_t(offset)),
|
||||
}
|
||||
default:
|
||||
panic("unsupported number of dimensions")
|
||||
}
|
||||
}
|
||||
|
||||
const (
|
||||
ropeTypeNorm C.int = iota
|
||||
)
|
||||
|
||||
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
|
||||
if ropeFactors == nil {
|
||||
ropeFactors = &Tensor{}
|
||||
}
|
||||
|
||||
return &Tensor{
|
||||
t: C.ggml_rope_ext(
|
||||
ctx.(*Context).ctx, t.t, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
|
||||
C.int(ropeDim),
|
||||
131072, // YaRN n_ctx_train
|
||||
ropeTypeNorm, // ROPE_TYPE_NORM
|
||||
C.float(ropeBase),
|
||||
C.float(ropeScale),
|
||||
0., // YaRN ext_factor
|
||||
1., // YaRN attn_factor
|
||||
32., // YaRN beta_fast
|
||||
1., // YaRN beta_slow
|
||||
),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
|
||||
return &Tensor{
|
||||
t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
|
||||
return &Tensor{
|
||||
t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
|
||||
}
|
||||
}
|
||||
|
||||
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
|
||||
return &Tensor{
|
||||
t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user