next ollama runner (#7913)

feat: add new Ollama engine using ggml through cgo

This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.

- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations

This is the first implementation of the new engine. Follow up PRs will implement more features:

- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
This commit is contained in:
Michael Yang
2025-02-14 00:31:21 +00:00
committed by GitHub
parent 8cf16063a5
commit 58245413f4
57 changed files with 475427 additions and 494 deletions

View File

@@ -21,8 +21,8 @@ import (
"github.com/ollama/ollama/convert"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llama"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/errtypes"
"github.com/ollama/ollama/types/model"
@@ -205,7 +205,7 @@ func detectModelTypeFromFiles(files map[string]string) string {
return ""
}
ct := llm.DetectGGMLType(buf)
ct := ggml.DetectContentType(buf)
if ct == "gguf" {
return "gguf"
}
@@ -271,11 +271,11 @@ func convertFromSafetensors(files map[string]string, baseLayers []*layerGGML, is
return nil, err
}
ggml, _, err := llm.DecodeGGML(bin, 0)
f, _, err := ggml.Decode(bin, 0)
if err != nil {
return nil, err
}
layers := []*layerGGML{{layer, ggml}}
layers := []*layerGGML{{layer, f}}
if !isAdapter {
return detectChatTemplate(layers)
@@ -283,13 +283,13 @@ func convertFromSafetensors(files map[string]string, baseLayers []*layerGGML, is
return layers, nil
}
func kvFromLayers(baseLayers []*layerGGML) (llm.KV, error) {
func kvFromLayers(baseLayers []*layerGGML) (ggml.KV, error) {
for _, l := range baseLayers {
if l.GGML != nil {
return l.KV(), nil
}
}
return llm.KV{}, fmt.Errorf("no base model was found")
return ggml.KV{}, fmt.Errorf("no base model was found")
}
func createModel(r api.CreateRequest, name model.Name, baseLayers []*layerGGML, fn func(resp api.ProgressResponse)) (err error) {
@@ -306,7 +306,7 @@ func createModel(r api.CreateRequest, name model.Name, baseLayers []*layerGGML,
if layer.GGML != nil {
quantType := strings.ToUpper(cmp.Or(r.Quantize, r.Quantization))
if quantType != "" && layer.GGML.Name() == "gguf" && layer.MediaType == "application/vnd.ollama.image.model" {
want, err := llm.ParseFileType(quantType)
want, err := ggml.ParseFileType(quantType)
if err != nil {
return err
}
@@ -403,7 +403,7 @@ func quantizeLayer(layer *layerGGML, quantizeType string, fn func(resp api.Progr
ft := layer.GGML.KV().FileType()
fn(api.ProgressResponse{Status: fmt.Sprintf("quantizing %s model to %s", ft, quantizeType)})
want, err := llm.ParseFileType(quantizeType)
want, err := ggml.ParseFileType(quantizeType)
if err != nil {
return nil, err
}
@@ -433,13 +433,13 @@ func quantizeLayer(layer *layerGGML, quantizeType string, fn func(resp api.Progr
return nil, err
}
ggml, _, err := llm.DecodeGGML(temp, 0)
f, _, err := ggml.Decode(temp, 0)
if err != nil {
slog.Error(fmt.Sprintf("error decoding ggml: %s\n", err))
return nil, err
}
return &layerGGML{newLayer, ggml}, nil
return &layerGGML{newLayer, f}, nil
}
func ggufLayers(digest string, fn func(resp api.ProgressResponse)) ([]*layerGGML, error) {
@@ -475,7 +475,7 @@ func ggufLayers(digest string, fn func(resp api.ProgressResponse)) ([]*layerGGML
var offset int64
for offset < stat.Size() {
ggml, n, err := llm.DecodeGGML(blob, 0)
f, n, err := ggml.Decode(blob, 0)
if errors.Is(err, io.EOF) {
break
} else if err != nil {
@@ -483,9 +483,9 @@ func ggufLayers(digest string, fn func(resp api.ProgressResponse)) ([]*layerGGML
}
mediatype := "application/vnd.ollama.image.model"
if ggml.KV().Kind() == "adapter" {
if f.KV().Kind() == "adapter" {
mediatype = "application/vnd.ollama.image.adapter"
} else if _, ok := ggml.KV()[fmt.Sprintf("%s.vision.block_count", ggml.KV().Architecture())]; ok || ggml.KV().Kind() == "projector" {
} else if _, ok := f.KV()[fmt.Sprintf("%s.vision.block_count", f.KV().Architecture())]; ok || f.KV().Kind() == "projector" {
mediatype = "application/vnd.ollama.image.projector"
}
@@ -506,7 +506,7 @@ func ggufLayers(digest string, fn func(resp api.ProgressResponse)) ([]*layerGGML
}
}
layers = append(layers, &layerGGML{layer, ggml})
layers = append(layers, &layerGGML{layer, f})
offset = n
}

View File

@@ -23,7 +23,7 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/model"
@@ -78,21 +78,21 @@ func (m *Model) CheckCapabilities(caps ...Capability) error {
for _, cap := range caps {
switch cap {
case CapabilityCompletion:
f, err := os.Open(m.ModelPath)
r, err := os.Open(m.ModelPath)
if err != nil {
slog.Error("couldn't open model file", "error", err)
continue
}
defer f.Close()
defer r.Close()
// TODO(mxyng): decode the GGML into model to avoid doing this multiple times
ggml, _, err := llm.DecodeGGML(f, 0)
f, _, err := ggml.Decode(r, 0)
if err != nil {
slog.Error("couldn't decode ggml", "error", err)
continue
}
if _, ok := ggml.KV()[fmt.Sprintf("%s.pooling_type", ggml.KV().Architecture())]; ok {
if _, ok := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]; ok {
errs = append(errs, errCapabilityCompletion)
}
case CapabilityTools:

View File

@@ -15,7 +15,7 @@ import (
"text/template/parse"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/model"
)
@@ -24,7 +24,7 @@ var intermediateBlobs map[string]string = make(map[string]string)
type layerGGML struct {
Layer
*llm.GGML
*ggml.GGML
}
func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
@@ -64,12 +64,12 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
}
defer blob.Close()
ggml, _, err := llm.DecodeGGML(blob, 0)
f, _, err := ggml.Decode(blob, 0)
if err != nil {
return nil, err
}
layers = append(layers, &layerGGML{layer, ggml})
layers = append(layers, &layerGGML{layer, f})
default:
layers = append(layers, &layerGGML{layer, nil})
}
@@ -118,7 +118,7 @@ func detectContentType(r io.Reader) (string, error) {
return "", err
}
if contentType := llm.DetectGGMLType(b.Bytes()); contentType != "" {
if contentType := ggml.DetectContentType(b.Bytes()); contentType != "" {
return contentType, nil
}

View File

@@ -30,6 +30,7 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/model/mllama"
"github.com/ollama/ollama/openai"
@@ -860,7 +861,7 @@ func GetModelInfo(req api.ShowRequest) (*api.ShowResponse, error) {
return resp, nil
}
func getKVData(digest string, verbose bool) (llm.KV, error) {
func getKVData(digest string, verbose bool) (ggml.KV, error) {
maxArraySize := 0
if verbose {
maxArraySize = -1

View File

@@ -19,12 +19,12 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
)
var stream bool = false
func createBinFile(t *testing.T, kv map[string]any, ti []llm.Tensor) (string, string) {
func createBinFile(t *testing.T, kv map[string]any, ti []ggml.Tensor) (string, string) {
t.Helper()
t.Setenv("OLLAMA_MODELS", cmp.Or(os.Getenv("OLLAMA_MODELS"), t.TempDir()))
@@ -36,7 +36,7 @@ func createBinFile(t *testing.T, kv map[string]any, ti []llm.Tensor) (string, st
}
defer f.Close()
if err := llm.WriteGGUF(f, kv, ti); err != nil {
if err := ggml.WriteGGUF(f, kv, ti); err != nil {
t.Fatal(err)
}
// Calculate sha256 of file
@@ -672,7 +672,7 @@ func TestCreateDetectTemplate(t *testing.T) {
var s Server
t.Run("matched", func(t *testing.T) {
_, digest := createBinFile(t, llm.KV{
_, digest := createBinFile(t, ggml.KV{
"tokenizer.chat_template": "{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
}, nil)
w := createRequest(t, s.CreateHandler, api.CreateRequest{

View File

@@ -16,6 +16,7 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
@@ -45,8 +46,8 @@ func (mockRunner) Tokenize(_ context.Context, s string) (tokens []int, err error
return
}
func newMockServer(mock *mockRunner) func(discover.GpuInfoList, string, *llm.GGML, []string, []string, api.Options, int) (llm.LlamaServer, error) {
return func(gpus discover.GpuInfoList, model string, ggml *llm.GGML, projectors, system []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
func newMockServer(mock *mockRunner) func(discover.GpuInfoList, string, *ggml.GGML, []string, []string, api.Options, int) (llm.LlamaServer, error) {
return func(_ discover.GpuInfoList, _ string, _ *ggml.GGML, _, _ []string, _ api.Options, _ int) (llm.LlamaServer, error) {
return mock, nil
}
}
@@ -76,7 +77,7 @@ func TestGenerateChat(t *testing.T) {
getGpuFn: discover.GetGPUInfo,
getCpuFn: discover.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
loadFn: func(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel int) {
loadFn: func(req *LlmRequest, _ *ggml.GGML, _ discover.GpuInfoList, _ int) {
// add small delay to simulate loading
time.Sleep(time.Millisecond)
req.successCh <- &runnerRef{
@@ -88,7 +89,7 @@ func TestGenerateChat(t *testing.T) {
go s.sched.Run(context.TODO())
_, digest := createBinFile(t, llm.KV{
_, digest := createBinFile(t, ggml.KV{
"general.architecture": "llama",
"llama.block_count": uint32(1),
"llama.context_length": uint32(8192),
@@ -98,7 +99,7 @@ func TestGenerateChat(t *testing.T) {
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []llm.Tensor{
}, []ggml.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
@@ -154,10 +155,10 @@ func TestGenerateChat(t *testing.T) {
})
t.Run("missing capabilities chat", func(t *testing.T) {
_, digest := createBinFile(t, llm.KV{
_, digest := createBinFile(t, ggml.KV{
"general.architecture": "bert",
"bert.pooling_type": uint32(0),
}, []llm.Tensor{})
}, []ggml.Tensor{})
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "bert",
Files: map[string]string{"bert.gguf": digest},
@@ -612,7 +613,7 @@ func TestGenerate(t *testing.T) {
getGpuFn: discover.GetGPUInfo,
getCpuFn: discover.GetCPUInfo,
reschedDelay: 250 * time.Millisecond,
loadFn: func(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel int) {
loadFn: func(req *LlmRequest, _ *ggml.GGML, _ discover.GpuInfoList, _ int) {
// add small delay to simulate loading
time.Sleep(time.Millisecond)
req.successCh <- &runnerRef{
@@ -624,7 +625,7 @@ func TestGenerate(t *testing.T) {
go s.sched.Run(context.TODO())
_, digest := createBinFile(t, llm.KV{
_, digest := createBinFile(t, ggml.KV{
"general.architecture": "llama",
"llama.block_count": uint32(1),
"llama.context_length": uint32(8192),
@@ -634,7 +635,7 @@ func TestGenerate(t *testing.T) {
"tokenizer.ggml.tokens": []string{""},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []llm.Tensor{
}, []ggml.Tensor{
{Name: "token_embd.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.attn_norm.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
{Name: "blk.0.ffn_down.weight", Shape: []uint64{1}, WriterTo: bytes.NewReader(make([]byte, 4))},
@@ -686,10 +687,10 @@ func TestGenerate(t *testing.T) {
})
t.Run("missing capabilities generate", func(t *testing.T) {
_, digest := createBinFile(t, llm.KV{
_, digest := createBinFile(t, ggml.KV{
"general.architecture": "bert",
"bert.pooling_type": uint32(0),
}, []llm.Tensor{})
}, []ggml.Tensor{})
w := createRequest(t, s.CreateHandler, api.CreateRequest{
Model: "bert",

View File

@@ -21,7 +21,7 @@ import (
"unicode"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/openai"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/version"
@@ -654,8 +654,8 @@ func TestShow(t *testing.T) {
var s Server
_, digest1 := createBinFile(t, llm.KV{"general.architecture": "test"}, nil)
_, digest2 := createBinFile(t, llm.KV{"general.type": "projector", "general.architecture": "clip"}, nil)
_, digest1 := createBinFile(t, ggml.KV{"general.architecture": "test"}, nil)
_, digest2 := createBinFile(t, ggml.KV{"general.type": "projector", "general.architecture": "clip"}, nil)
createRequest(t, s.CreateHandler, api.CreateRequest{
Name: "show-model",

View File

@@ -18,6 +18,7 @@ import (
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
@@ -41,8 +42,8 @@ type Scheduler struct {
loaded map[string]*runnerRef
loadedMu sync.Mutex
loadFn func(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel int)
newServerFn func(gpus discover.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error)
loadFn func(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList, numParallel int)
newServerFn func(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error)
getGpuFn func() discover.GpuInfoList
getCpuFn func() discover.GpuInfoList
reschedDelay time.Duration
@@ -409,7 +410,7 @@ func (pending *LlmRequest) useLoadedRunner(runner *runnerRef, finished chan *Llm
}()
}
func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel int) {
func (s *Scheduler) load(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList, numParallel int) {
if numParallel < 1 {
numParallel = 1
}
@@ -417,12 +418,12 @@ func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoL
if req.sessionDuration != nil {
sessionDuration = req.sessionDuration.Duration
}
llama, err := s.newServerFn(gpus, req.model.ModelPath, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, numParallel)
llama, err := s.newServerFn(gpus, req.model.ModelPath, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, numParallel)
if err != nil {
// some older models are not compatible with newer versions of llama.cpp
// show a generalized compatibility error until there is a better way to
// check for model compatibility
if errors.Is(err, llm.ErrUnsupportedFormat) || strings.Contains(err.Error(), "failed to load model") {
if errors.Is(err, ggml.ErrUnsupportedFormat) || strings.Contains(err.Error(), "failed to load model") {
err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, req.model.ShortName)
}
slog.Info("NewLlamaServer failed", "model", req.model.ModelPath, "error", err)
@@ -685,7 +686,7 @@ func (a ByDuration) Less(i, j int) bool {
// If the model can not be fit fully within the available GPU(s) nil is returned
// If numParallel is <= 0, this will attempt try to optimize parallelism based on available VRAM, and adjust
// opts.NumCtx accordingly
func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel *int) discover.GpuInfoList {
func pickBestFullFitByLibrary(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList, numParallel *int) discover.GpuInfoList {
var estimatedVRAM uint64
var numParallelToTry []int
@@ -710,7 +711,7 @@ func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus discover.Gpu
req.opts.NumCtx = req.origNumCtx * p
if !envconfig.SchedSpread() {
for _, g := range sgl {
if ok, estimatedVRAM = llm.PredictServerFit([]discover.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
if ok, estimatedVRAM = llm.PredictServerFit([]discover.GpuInfo{g}, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
*numParallel = p
return []discover.GpuInfo{g}
@@ -726,7 +727,7 @@ func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus discover.Gpu
// Now try all the GPUs
for _, p := range numParallelToTry {
req.opts.NumCtx = req.origNumCtx * p
if ok, estimatedVRAM = llm.PredictServerFit(sgl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
if ok, estimatedVRAM = llm.PredictServerFit(sgl, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
slog.Info("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "parallel", p, "required", format.HumanBytes2(estimatedVRAM))
*numParallel = p
return sgl
@@ -737,7 +738,7 @@ func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus discover.Gpu
}
// If multiple Libraries are detected, pick the Library which loads the most layers for the model
func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList, numParallel *int) discover.GpuInfoList {
func pickBestPartialFitByLibrary(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList, numParallel *int) discover.GpuInfoList {
if *numParallel <= 0 {
*numParallel = 1
req.opts.NumCtx = req.origNumCtx
@@ -749,7 +750,7 @@ func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus discover.
var bestEstimate uint64
var bestFit int
for i, gl := range byLibrary {
_, estimatedVRAM := llm.PredictServerFit(gl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts)
_, estimatedVRAM := llm.PredictServerFit(gl, f, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts)
if estimatedVRAM > bestEstimate {
bestEstimate = estimatedVRAM
bestFit = i
@@ -822,9 +823,9 @@ func (s *Scheduler) expireRunner(model *Model) {
// If other runners are loaded, make sure the pending request will fit in system memory
// If not, pick a runner to unload, else return nil and the request can be loaded
func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, ggml *llm.GGML, gpus discover.GpuInfoList) *runnerRef {
func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, f *ggml.GGML, gpus discover.GpuInfoList) *runnerRef {
slog.Debug("evaluating if CPU model load will fit in available system memory")
estimate := llm.EstimateGPULayers(gpus, ggml, req.model.ProjectorPaths, req.opts)
estimate := llm.EstimateGPULayers(gpus, f, req.model.ProjectorPaths, req.opts)
if estimate.TotalSize <= gpus[0].FreeMemory {
slog.Debug("cpu inference mode, model fits in available system memory", "model", format.HumanBytes2(estimate.TotalSize), "available", format.HumanBytes2(gpus[0].FreeMemory))
return nil

View File

@@ -15,6 +15,7 @@ import (
"github.com/ollama/ollama/app/lifecycle"
"github.com/ollama/ollama/discover"
"github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llm"
)
@@ -37,7 +38,7 @@ func TestLoad(t *testing.T) {
ctx, done := context.WithTimeout(context.Background(), 20*time.Millisecond)
defer done()
s := InitScheduler(ctx)
var ggml *llm.GGML // value not used in tests
var f *ggml.GGML // value not used in tests
req := &LlmRequest{
ctx: ctx,
model: &Model{ModelPath: "foo"},
@@ -47,11 +48,11 @@ func TestLoad(t *testing.T) {
sessionDuration: &api.Duration{Duration: 2 * time.Second},
}
// Fail to load model first
s.newServerFn = func(gpus discover.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
s.newServerFn = func(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
return nil, errors.New("something failed to load model blah")
}
gpus := discover.GpuInfoList{}
s.load(req, ggml, gpus, 0)
s.load(req, f, gpus, 0)
require.Empty(t, req.successCh)
require.Len(t, req.errCh, 1)
s.loadedMu.Lock()
@@ -61,10 +62,10 @@ func TestLoad(t *testing.T) {
require.Contains(t, err.Error(), "this model may be incompatible")
server := &mockLlm{estimatedVRAM: 10, estimatedVRAMByGPU: map[string]uint64{}}
s.newServerFn = func(gpus discover.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
s.newServerFn = func(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
return server, nil
}
s.load(req, ggml, gpus, 0)
s.load(req, f, gpus, 0)
select {
case err := <-req.errCh:
require.NoError(t, err)
@@ -78,7 +79,7 @@ func TestLoad(t *testing.T) {
req.model.ModelPath = "dummy_model_path"
server.waitResp = errors.New("wait failure")
s.load(req, ggml, gpus, 0)
s.load(req, f, gpus, 0)
select {
case err := <-req.errCh:
require.Contains(t, err.Error(), "wait failure")
@@ -99,10 +100,10 @@ type reqBundle struct {
ctxDone func()
srv *mockLlm
req *LlmRequest
ggml *llm.GGML
f *ggml.GGML
}
func (scenario *reqBundle) newServer(gpus discover.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
func (scenario *reqBundle) newServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
return scenario.srv, nil
}
@@ -115,7 +116,7 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est
require.NoError(t, err)
defer f.Close()
require.NoError(t, llm.WriteGGUF(f, llm.KV{
require.NoError(t, ggml.WriteGGUF(f, ggml.KV{
"general.architecture": "llama",
"llama.context_length": uint32(32),
"llama.embedding_length": uint32(4096),
@@ -125,7 +126,7 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est
"tokenizer.ggml.tokens": []string{" "},
"tokenizer.ggml.scores": []float32{0},
"tokenizer.ggml.token_type": []int32{0},
}, []llm.Tensor{
}, []ggml.Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
}))
@@ -133,7 +134,7 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est
fname := f.Name()
model := &Model{Name: modelName, ModelPath: fname}
b.ggml, err = llm.LoadModel(model.ModelPath, 0)
b.f, err = llm.LoadModel(model.ModelPath, 0)
require.NoError(t, err)
if duration == nil {
@@ -174,7 +175,7 @@ func TestRequestsSameModelSameRequest(t *testing.T) {
a := newScenarioRequest(t, ctx, "ollama-model-1", 10, &api.Duration{Duration: 5 * time.Millisecond})
b := newScenarioRequest(t, ctx, "ollama-model-1", 11, &api.Duration{Duration: 0})
b.req.model = a.req.model
b.ggml = a.ggml
b.f = a.f
s.newServerFn = a.newServer
slog.Info("a")
@@ -218,7 +219,7 @@ func TestRequestsSimpleReloadSameModel(t *testing.T) {
b := newScenarioRequest(t, ctx, "ollama-model-1", 20, &api.Duration{Duration: 5 * time.Millisecond})
tmpModel := *a.req.model
b.req.model = &tmpModel
b.ggml = a.ggml
b.f = a.f
s.newServerFn = a.newServer
slog.Info("a")
@@ -419,13 +420,13 @@ func TestExpireRunner(t *testing.T) {
sessionDuration: &api.Duration{Duration: 2 * time.Minute},
}
var ggml *llm.GGML
var f *ggml.GGML
gpus := discover.GpuInfoList{}
server := &mockLlm{estimatedVRAM: 10, estimatedVRAMByGPU: map[string]uint64{}}
s.newServerFn = func(gpus discover.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
s.newServerFn = func(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
return server, nil
}
s.load(req, ggml, gpus, 0)
s.load(req, f, gpus, 0)
select {
case err := <-req.errCh:
@@ -729,9 +730,9 @@ func TestHomogeneousGPUs(t *testing.T) {
}
s.getCpuFn = getCpuFn
a := newScenarioRequest(t, ctx, "ollama-model-1", 10, &api.Duration{Duration: 5 * time.Millisecond})
s.newServerFn = func(gpus discover.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
s.newServerFn = func(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) {
require.Len(t, gpus, 1)
return a.newServer(gpus, model, ggml, adapters, projectors, opts, numParallel)
return a.newServer(gpus, model, f, adapters, projectors, opts, numParallel)
}
slog.Info("a")
s.pendingReqCh <- a.req