mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-10 15:57:04 +00:00
next ollama runner (#7913)
feat: add new Ollama engine using ggml through cgo This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this. - `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go` - `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go` - `ml.Tensor` defines the interface for a tensor and tensor operations This is the first implementation of the new engine. Follow up PRs will implement more features: - non-greedy sampling (#8410) - integration with Ollama and KV caching (#8301) - more model support (#9080) with more coming soon Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
This commit is contained in:
@@ -23,7 +23,7 @@ import (
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/llm"
|
||||
"github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/parser"
|
||||
"github.com/ollama/ollama/template"
|
||||
"github.com/ollama/ollama/types/model"
|
||||
@@ -78,21 +78,21 @@ func (m *Model) CheckCapabilities(caps ...Capability) error {
|
||||
for _, cap := range caps {
|
||||
switch cap {
|
||||
case CapabilityCompletion:
|
||||
f, err := os.Open(m.ModelPath)
|
||||
r, err := os.Open(m.ModelPath)
|
||||
if err != nil {
|
||||
slog.Error("couldn't open model file", "error", err)
|
||||
continue
|
||||
}
|
||||
defer f.Close()
|
||||
defer r.Close()
|
||||
|
||||
// TODO(mxyng): decode the GGML into model to avoid doing this multiple times
|
||||
ggml, _, err := llm.DecodeGGML(f, 0)
|
||||
f, _, err := ggml.Decode(r, 0)
|
||||
if err != nil {
|
||||
slog.Error("couldn't decode ggml", "error", err)
|
||||
continue
|
||||
}
|
||||
|
||||
if _, ok := ggml.KV()[fmt.Sprintf("%s.pooling_type", ggml.KV().Architecture())]; ok {
|
||||
if _, ok := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]; ok {
|
||||
errs = append(errs, errCapabilityCompletion)
|
||||
}
|
||||
case CapabilityTools:
|
||||
|
||||
Reference in New Issue
Block a user