next ollama runner (#7913)

feat: add new Ollama engine using ggml through cgo

This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.

- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations

This is the first implementation of the new engine. Follow up PRs will implement more features:

- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
This commit is contained in:
Michael Yang
2025-02-14 00:31:21 +00:00
committed by GitHub
parent 8cf16063a5
commit 58245413f4
57 changed files with 475427 additions and 494 deletions

View File

@@ -23,7 +23,7 @@ import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/llm"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/parser"
"github.com/ollama/ollama/template"
"github.com/ollama/ollama/types/model"
@@ -78,21 +78,21 @@ func (m *Model) CheckCapabilities(caps ...Capability) error {
for _, cap := range caps {
switch cap {
case CapabilityCompletion:
f, err := os.Open(m.ModelPath)
r, err := os.Open(m.ModelPath)
if err != nil {
slog.Error("couldn't open model file", "error", err)
continue
}
defer f.Close()
defer r.Close()
// TODO(mxyng): decode the GGML into model to avoid doing this multiple times
ggml, _, err := llm.DecodeGGML(f, 0)
f, _, err := ggml.Decode(r, 0)
if err != nil {
slog.Error("couldn't decode ggml", "error", err)
continue
}
if _, ok := ggml.KV()[fmt.Sprintf("%s.pooling_type", ggml.KV().Architecture())]; ok {
if _, ok := f.KV()[fmt.Sprintf("%s.pooling_type", f.KV().Architecture())]; ok {
errs = append(errs, errCapabilityCompletion)
}
case CapabilityTools: