Switch back to subprocessing for llama.cpp

This should resolve a number of memory leak and stability defects by allowing
us to isolate llama.cpp in a separate process and shutdown when idle, and
gracefully restart if it has problems.  This also serves as a first step to be
able to run multiple copies to support multiple models concurrently.
This commit is contained in:
Daniel Hiltgen
2024-03-14 10:24:13 -07:00
parent 3b6a9154dd
commit 58d95cc9bd
35 changed files with 1416 additions and 1910 deletions

View File

@@ -1,21 +1,14 @@
set(TARGET ext_server)
set(TARGET ollama_llama_server)
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h)
install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
if (WIN32)
add_library(${TARGET} SHARED ext_server.cpp ../llama.cpp/llama.cpp)
else()
add_library(${TARGET} STATIC ext_server.cpp ../llama.cpp/llama.cpp)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
endif()
target_compile_features(${TARGET} PRIVATE cxx_std_11)
target_compile_definitions(${TARGET} PUBLIC LLAMA_SERVER_LIBRARY=1)
target_link_libraries(${TARGET} PRIVATE ggml llava common )
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(${TARGET} PRIVATE SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>)
install(TARGETS ext_server LIBRARY)
if (CUDAToolkit_FOUND)
target_include_directories(${TARGET} PRIVATE ${CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES})
if (WIN32)
target_link_libraries(${TARGET} PRIVATE nvml)
endif()
endif()
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@@ -1,18 +0,0 @@
# Extern C Server
This directory contains a thin facade we layer on top of the Llama.cpp server to
expose `extern C` interfaces to access the functionality through direct API
calls in-process. The llama.cpp code uses compile time macros to configure GPU
type along with other settings. During the `go generate ./...` execution, the
build will generate one or more copies of the llama.cpp `extern C` server based
on what GPU libraries are detected to support multiple GPU types as well as CPU
only support. The Ollama go build then embeds these different servers to support
different GPUs and settings at runtime.
If you are making changes to the code in this directory, make sure to disable
caching during your go build to ensure you pick up your changes. A typical
iteration cycle from the top of the source tree looks like:
```
go generate ./... && go build -a .
```

View File

@@ -1,377 +0,0 @@
#include "ext_server.h"
#include <atomic>
// Necessary evil since the server types are not defined in a header
#include "server.cpp"
// Low level API access to verify GPU access
#if defined(GGML_USE_CUBLAS)
#if defined(GGML_USE_HIPBLAS)
#include <hip/hip_runtime.h>
#include <hipblas/hipblas.h>
#include <hip/hip_fp16.h>
#ifdef __HIP_PLATFORM_AMD__
// for rocblas_initialize()
#include "rocblas/rocblas.h"
#endif // __HIP_PLATFORM_AMD__
#define cudaGetDevice hipGetDevice
#define cudaError_t hipError_t
#define cudaSuccess hipSuccess
#define cudaGetErrorString hipGetErrorString
#else
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cuda_fp16.h>
#endif // defined(GGML_USE_HIPBLAS)
#endif // GGML_USE_CUBLAS
// Expose the llama server as a callable extern "C" API
llama_server_context *llama = NULL;
std::thread ext_server_thread;
bool shutting_down = false;
std::atomic_int recv_counter;
// RAII wrapper for tracking in-flight recv calls
class atomicRecv {
public:
atomicRecv(std::atomic<int> &atomic) : atomic(atomic) {
++this->atomic;
}
~atomicRecv() {
--this->atomic;
}
private:
std::atomic<int> &atomic;
};
void llama_server_init(ext_server_params *sparams, ext_server_resp_t *err) {
recv_counter = 0;
assert(err != NULL && sparams != NULL);
log_set_target(stderr);
if (!sparams->verbose_logging) {
server_verbose = true;
log_disable();
}
LOG_TEE("system info: %s\n", llama_print_system_info());
err->id = 0;
err->msg[0] = '\0';
try {
llama = new llama_server_context;
gpt_params params;
params.n_ctx = sparams->n_ctx;
params.n_batch = sparams->n_batch;
if (sparams->n_threads > 0) {
params.n_threads = sparams->n_threads;
}
params.n_parallel = sparams->n_parallel;
params.rope_freq_base = sparams->rope_freq_base;
params.rope_freq_scale = sparams->rope_freq_scale;
if (sparams->memory_f16) {
params.cache_type_k = "f16";
params.cache_type_v = "f16";
} else {
params.cache_type_k = "f32";
params.cache_type_v = "f32";
}
params.n_gpu_layers = sparams->n_gpu_layers;
params.main_gpu = sparams->main_gpu;
params.use_mlock = sparams->use_mlock;
params.use_mmap = sparams->use_mmap;
params.numa = (ggml_numa_strategy)sparams->numa;
params.embedding = sparams->embedding;
if (sparams->model != NULL) {
params.model = sparams->model;
}
if (sparams->lora_adapters != NULL) {
for (ext_server_lora_adapter *la = sparams->lora_adapters; la != NULL;
la = la->next) {
params.lora_adapter.push_back(std::make_tuple(la->adapter, la->scale));
}
params.use_mmap = false;
}
if (sparams->mmproj != NULL) {
params.mmproj = std::string(sparams->mmproj);
}
#if defined(GGML_USE_CUBLAS)
// Before attempting to init the backend which will assert on error, verify the CUDA/ROCM GPU is accessible
LOG_TEE("Performing pre-initialization of GPU\n");
int id;
cudaError_t cudaErr = cudaGetDevice(&id);
if (cudaErr != cudaSuccess) {
err->id = -1;
snprintf(err->msg, err->msg_len, "Unable to init GPU: %s", cudaGetErrorString(cudaErr));
return;
}
#endif
llama_backend_init();
llama_numa_init(params.numa);
if (!llama->load_model(params)) {
// an error occurred that was not thrown
err->id = -1;
snprintf(err->msg, err->msg_len, "error loading model %s", params.model.c_str());
return;
}
llama->initialize();
} catch (std::exception &e) {
err->id = -1;
snprintf(err->msg, err->msg_len, "exception %s", e.what());
} catch (...) {
err->id = -1;
snprintf(err->msg, err->msg_len,
"Unknown exception initializing llama server");
}
}
void llama_server_start() {
assert(llama != NULL);
// TODO mutex to protect thread creation
ext_server_thread = std::thread([&]() {
try {
LOG_TEE("llama server main loop starting\n");
ggml_time_init();
llama->queue_tasks.on_new_task(std::bind(
&llama_server_context::process_single_task, llama, std::placeholders::_1));
llama->queue_tasks.on_finish_multitask(std::bind(
&llama_server_context::on_finish_multitask, llama, std::placeholders::_1));
llama->queue_tasks.on_run_slots(std::bind(
&llama_server_context::update_slots, llama));
llama->queue_results.on_multitask_update(std::bind(
&llama_server_queue::update_multitask,
&llama->queue_tasks,
std::placeholders::_1,
std::placeholders::_2,
std::placeholders::_3
));
llama->queue_tasks.start_loop();
} catch (std::exception &e) {
LOG_TEE("caught exception in llama server main loop: %s\n", e.what());
} catch (...) {
LOG_TEE("caught unknown exception in llama server main loop\n");
}
LOG_TEE("\nllama server shutting down\n");
llama_backend_free();
});
}
void llama_server_stop() {
assert(llama != NULL);
// Shutdown any in-flight requests and block incoming requests.
LOG_TEE("\ninitiating shutdown - draining remaining tasks...\n");
shutting_down = true;
while (recv_counter.load() > 0) {
std::this_thread::sleep_for(std::chrono::milliseconds(50));
}
// This may take a while for any pending tasks to drain
// TODO - consider a timeout to cancel tasks if it's taking too long
llama->queue_tasks.terminate();
ext_server_thread.join();
delete llama;
llama = NULL;
LOG_TEE("llama server shutdown complete\n");
shutting_down = false;
}
void llama_server_completion(const char *json_req, ext_server_resp_t *resp) {
assert(llama != NULL && json_req != NULL && resp != NULL);
resp->id = -1;
resp->msg[0] = '\0';
try {
if (shutting_down) {
throw std::runtime_error("server shutting down");
}
json data = json::parse(json_req);
resp->id = llama->queue_tasks.get_new_id();
llama->queue_results.add_waiting_task_id(resp->id);
llama->request_completion(resp->id, data, false, false, -1);
} catch (std::exception &e) {
snprintf(resp->msg, resp->msg_len, "exception %s", e.what());
} catch (...) {
snprintf(resp->msg, resp->msg_len, "Unknown exception during completion");
}
}
void llama_server_completion_next_result(const int task_id,
ext_server_task_result_t *resp) {
assert(llama != NULL && resp != NULL);
resp->id = -1;
resp->stop = false;
resp->error = false;
resp->json_resp = NULL;
std::string result_json;
try {
atomicRecv ar(recv_counter);
task_result result = llama->queue_results.recv(task_id);
result_json =
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace);
resp->id = result.id;
resp->stop = result.stop;
resp->error = result.error;
if (result.error) {
LOG_TEE("next result cancel on error\n");
llama->request_cancel(task_id);
LOG_TEE("next result removing waiting tak ID: %d\n", task_id);
llama->queue_results.remove_waiting_task_id(task_id);
} else if (result.stop) {
LOG_TEE("next result cancel on stop\n");
llama->request_cancel(task_id);
LOG_TEE("next result removing waiting task ID: %d\n", task_id);
llama->queue_results.remove_waiting_task_id(task_id);
} else if (shutting_down) {
LOG_TEE("aborting completion due to shutdown %d\n", task_id);
llama->request_cancel(task_id);
llama->queue_results.remove_waiting_task_id(task_id);
resp->stop = true;
}
} catch (std::exception &e) {
resp->error = true;
resp->id = -1;
result_json = "{\"error\":\"exception " + std::string(e.what()) + "\"}";
LOG_TEE("llama server completion exception %s\n", e.what());
} catch (...) {
resp->error = true;
resp->id = -1;
result_json = "{\"error\":\"Unknown exception during completion\"}";
LOG_TEE("llama server completion unknown exception\n");
}
const std::string::size_type size = result_json.size() + 1;
resp->json_resp = new char[size];
snprintf(resp->json_resp, size, "%s", result_json.c_str());
}
void llama_server_release_task_result(ext_server_task_result_t *result) {
if (result == NULL || result->json_resp == NULL) {
return;
}
delete[] result->json_resp;
}
void llama_server_completion_cancel(const int task_id, ext_server_resp_t *err) {
assert(llama != NULL && err != NULL);
err->id = 0;
err->msg[0] = '\0';
try {
llama->request_cancel(task_id);
llama->queue_results.remove_waiting_task_id(task_id);
} catch (std::exception &e) {
err->id = -1;
snprintf(err->msg, err->msg_len, "exception %s", e.what());
} catch (...) {
err->id = -1;
snprintf(err->msg, err->msg_len,
"Unknown exception completion cancel in llama server");
}
}
void llama_server_tokenize(const char *json_req, char **json_resp,
ext_server_resp_t *err) {
assert(llama != NULL && json_req != NULL && json_resp != NULL && err != NULL);
*json_resp = NULL;
err->id = 0;
err->msg[0] = '\0';
try {
if (shutting_down) {
throw std::runtime_error("server shutting down");
}
const json body = json::parse(json_req);
std::vector<llama_token> tokens;
if (body.count("content") != 0) {
tokens = llama->tokenize(body["content"], false);
}
const json data = format_tokenizer_response(tokens);
std::string result_json = data.dump();
const std::string::size_type size = result_json.size() + 1;
*json_resp = new char[size];
snprintf(*json_resp, size, "%s", result_json.c_str());
} catch (std::exception &e) {
err->id = -1;
snprintf(err->msg, err->msg_len, "exception %s", e.what());
} catch (...) {
err->id = -1;
snprintf(err->msg, err->msg_len, "Unknown exception during tokenize");
}
}
void llama_server_release_json_resp(char **json_resp) {
if (json_resp == NULL || *json_resp == NULL) {
return;
}
delete[] *json_resp;
}
void llama_server_detokenize(const char *json_req, char **json_resp,
ext_server_resp_t *err) {
assert(llama != NULL && json_req != NULL && json_resp != NULL && err != NULL);
*json_resp = NULL;
err->id = 0;
err->msg[0] = '\0';
try {
if (shutting_down) {
throw std::runtime_error("server shutting down");
}
const json body = json::parse(json_req);
std::string content;
if (body.count("tokens") != 0) {
const std::vector<llama_token> tokens = body["tokens"];
content = tokens_to_str(llama->ctx, tokens.cbegin(), tokens.cend());
}
const json data = format_detokenized_response(content);
std::string result_json = data.dump();
const std::string::size_type size = result_json.size() + 1;
*json_resp = new char[size];
snprintf(*json_resp, size, "%s", result_json.c_str());
} catch (std::exception &e) {
err->id = -1;
snprintf(err->msg, err->msg_len, "exception %s", e.what());
} catch (...) {
err->id = -1;
snprintf(err->msg, err->msg_len, "Unknown exception during detokenize");
}
}
void llama_server_embedding(const char *json_req, char **json_resp,
ext_server_resp_t *err) {
assert(llama != NULL && json_req != NULL && json_resp != NULL && err != NULL);
*json_resp = NULL;
err->id = 0;
err->msg[0] = '\0';
try {
if (shutting_down) {
throw std::runtime_error("server shutting down");
}
const json body = json::parse(json_req);
json prompt;
if (body.count("content") != 0) {
prompt = body["content"];
} else {
prompt = "";
}
const int task_id = llama->queue_tasks.get_new_id();
llama->queue_results.add_waiting_task_id(task_id);
llama->request_completion(task_id, {{"prompt", prompt}, {"n_predict", 0}}, false, true, -1);
atomicRecv ar(recv_counter);
task_result result = llama->queue_results.recv(task_id);
std::string result_json = result.result_json.dump();
const std::string::size_type size = result_json.size() + 1;
*json_resp = new char[size];
snprintf(*json_resp, size, "%s", result_json.c_str());
llama->queue_results.remove_waiting_task_id(task_id);
} catch (std::exception &e) {
err->id = -1;
snprintf(err->msg, err->msg_len, "exception %s", e.what());
} catch (...) {
err->id = -1;
snprintf(err->msg, err->msg_len, "Unknown exception during embedding");
}
}

View File

@@ -1,95 +0,0 @@
#if defined(LLAMA_SERVER_LIBRARY)
#ifndef LLAMA_SERVER_H
#define LLAMA_SERVER_H
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
int __main(int argc, char **argv);
// This exposes extern C entrypoints into the llama_server
// To enable the server compile with LLAMA_SERVER_LIBRARY
#ifdef __cplusplus
extern "C" {
#endif
typedef struct ext_server_resp {
int id; // < 0 on error
size_t msg_len; // caller must allocate msg and set msg_len
char *msg;
} ext_server_resp_t;
// Allocated and freed by caller
typedef struct ext_server_lora_adapter {
char *adapter;
float scale;
struct ext_server_lora_adapter *next;
} ext_server_lora_adapter_t;
// Allocated and freed by caller
typedef struct ext_server_params {
char *model;
uint32_t n_ctx; // token context window, 0 = from model
uint32_t n_batch; // prompt processing maximum batch size
uint32_t n_threads; // number of threads to use for generation
int32_t n_parallel; // number of parallel sequences to decodewra
float rope_freq_base; // RoPE base frequency, 0 = from model
float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
bool memory_f16; // use f16 instead of f32 for memory kv
int32_t n_gpu_layers; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu; // the GPU that is used for scratch and small tensors
bool use_mlock; // force system to keep model in RAM
bool use_mmap; // use mmap if possible
int numa; // attempt optimizations that help on some NUMA systems
bool embedding; // get only sentence embedding
ext_server_lora_adapter_t *lora_adapters;
char *mmproj;
bool verbose_logging; // Enable verbose logging of the server
} ext_server_params_t;
typedef struct ext_server_task_result {
int id;
bool stop;
bool error;
char *json_resp; // null terminated, memory managed by ext_server
} ext_server_task_result_t;
// Initialize the server once per process
// err->id = 0 for success and err->msg[0] = NULL
// err->id != 0 for failure, and err->msg contains error message
void llama_server_init(ext_server_params_t *sparams, ext_server_resp_t *err);
// Run the main loop, called once per init
void llama_server_start();
// Stop the main loop and free up resources allocated in init and start. Init
// must be called again to reuse
void llama_server_stop();
// json_req null terminated string, memory managed by caller
// resp->id >= 0 on success (task ID)
// resp->id < 0 on error, and resp->msg contains error message
void llama_server_completion(const char *json_req, ext_server_resp_t *resp);
// Caller must call llama_server_release_task_result to free resp->json_resp
void llama_server_completion_next_result(const int task_id,
ext_server_task_result_t *result);
void llama_server_completion_cancel(const int task_id, ext_server_resp_t *err);
void llama_server_release_task_result(ext_server_task_result_t *result);
// Caller must call llama_server_releaes_json_resp to free json_resp if err.id <
// 0
void llama_server_tokenize(const char *json_req, char **json_resp,
ext_server_resp_t *err);
void llama_server_detokenize(const char *json_req, char **json_resp,
ext_server_resp_t *err);
void llama_server_embedding(const char *json_req, char **json_resp,
ext_server_resp_t *err);
void llama_server_release_json_resp(char **json_resp);
#ifdef __cplusplus
}
#endif
#endif
#endif // LLAMA_SERVER_LIBRARY

View File

@@ -2768,7 +2768,7 @@ inline void signal_handler(int signal) {
shutdown_handler(signal);
}
int _main(int argc, char **argv)
int main(int argc, char **argv)
{
#if SERVER_VERBOSE != 1
log_disable();