mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-11 08:17:03 +00:00
@@ -5,9 +5,11 @@ import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"reflect"
|
||||
"runtime"
|
||||
"sort"
|
||||
"strconv"
|
||||
"strings"
|
||||
"sync"
|
||||
"time"
|
||||
@@ -59,11 +61,12 @@ var defaultParallel = 4
|
||||
var ErrMaxQueue = fmt.Errorf("server busy, please try again. maximum pending requests exceeded")
|
||||
|
||||
func InitScheduler(ctx context.Context) *Scheduler {
|
||||
maxQueue := envconfig.MaxQueue()
|
||||
sched := &Scheduler{
|
||||
pendingReqCh: make(chan *LlmRequest, envconfig.MaxQueuedRequests),
|
||||
finishedReqCh: make(chan *LlmRequest, envconfig.MaxQueuedRequests),
|
||||
expiredCh: make(chan *runnerRef, envconfig.MaxQueuedRequests),
|
||||
unloadedCh: make(chan interface{}, envconfig.MaxQueuedRequests),
|
||||
pendingReqCh: make(chan *LlmRequest, maxQueue),
|
||||
finishedReqCh: make(chan *LlmRequest, maxQueue),
|
||||
expiredCh: make(chan *runnerRef, maxQueue),
|
||||
unloadedCh: make(chan interface{}, maxQueue),
|
||||
loaded: make(map[string]*runnerRef),
|
||||
newServerFn: llm.NewLlamaServer,
|
||||
getGpuFn: gpu.GetGPUInfo,
|
||||
@@ -126,7 +129,7 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
||||
slog.Debug("pending request cancelled or timed out, skipping scheduling")
|
||||
continue
|
||||
}
|
||||
numParallel := envconfig.NumParallel
|
||||
numParallel := int(envconfig.NumParallel())
|
||||
// TODO (jmorganca): multimodal models don't support parallel yet
|
||||
// see https://github.com/ollama/ollama/issues/4165
|
||||
if len(pending.model.ProjectorPaths) > 0 && numParallel != 1 {
|
||||
@@ -148,7 +151,7 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
||||
pending.useLoadedRunner(runner, s.finishedReqCh)
|
||||
break
|
||||
}
|
||||
} else if envconfig.MaxRunners > 0 && loadedCount >= envconfig.MaxRunners {
|
||||
} else if envconfig.MaxRunners() > 0 && loadedCount >= int(envconfig.MaxRunners()) {
|
||||
slog.Debug("max runners achieved, unloading one to make room", "runner_count", loadedCount)
|
||||
runnerToExpire = s.findRunnerToUnload()
|
||||
} else {
|
||||
@@ -161,7 +164,7 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
||||
gpus = s.getGpuFn()
|
||||
}
|
||||
|
||||
if envconfig.MaxRunners <= 0 {
|
||||
if envconfig.MaxRunners() <= 0 {
|
||||
// No user specified MaxRunners, so figure out what automatic setting to use
|
||||
// If all GPUs have reliable free memory reporting, defaultModelsPerGPU * the number of GPUs
|
||||
// if any GPU has unreliable free memory reporting, 1x the number of GPUs
|
||||
@@ -173,11 +176,13 @@ func (s *Scheduler) processPending(ctx context.Context) {
|
||||
}
|
||||
}
|
||||
if allReliable {
|
||||
envconfig.MaxRunners = defaultModelsPerGPU * len(gpus)
|
||||
// HACK
|
||||
os.Setenv("OLLAMA_MAX_LOADED_MODELS", strconv.Itoa(defaultModelsPerGPU*len(gpus)))
|
||||
slog.Debug("updating default concurrency", "OLLAMA_MAX_LOADED_MODELS", envconfig.MaxRunners, "gpu_count", len(gpus))
|
||||
} else {
|
||||
// HACK
|
||||
os.Setenv("OLLAMA_MAX_LOADED_MODELS", strconv.Itoa(len(gpus)))
|
||||
slog.Info("one or more GPUs detected that are unable to accurately report free memory - disabling default concurrency")
|
||||
envconfig.MaxRunners = len(gpus)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -404,7 +409,7 @@ func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList,
|
||||
if numParallel < 1 {
|
||||
numParallel = 1
|
||||
}
|
||||
sessionDuration := envconfig.KeepAlive
|
||||
sessionDuration := envconfig.KeepAlive()
|
||||
if req.sessionDuration != nil {
|
||||
sessionDuration = req.sessionDuration.Duration
|
||||
}
|
||||
@@ -699,7 +704,7 @@ func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoL
|
||||
// First attempt to fit the model into a single GPU
|
||||
for _, p := range numParallelToTry {
|
||||
req.opts.NumCtx = req.origNumCtx * p
|
||||
if !envconfig.SchedSpread {
|
||||
if !envconfig.SchedSpread() {
|
||||
for _, g := range sgl {
|
||||
if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok {
|
||||
slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM))
|
||||
|
||||
Reference in New Issue
Block a user