mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-15 18:27:08 +00:00
Fix gemma3:12b to load on single Tesla K80 GPU
Problem: gemma3:12b (10.2 GiB actual) was splitting across 2 GPUs despite fitting in single Tesla K80 (11.2 GiB available). Root Cause: Graph memory estimates for CC 3.7 were 15-20% too high (estimated 1.3 GiB, actual 1.1 GiB), causing single-GPU fit check to fail by ~200 MiB margin. Solution: Apply empirical 85% correction factor to graph estimates for Tesla K80 (CC 3.7) based on measured actual usage. Results: - Memory estimate: 11.9 GiB → 11.0 GiB (-900 MiB) - GPU split: 1,48 layers → single GPU (no split) - GPU 0: 10,015 MiB (was 617 MiB) - GPU 1: 7 MiB (was 9,866 MiB) - Inference: 94% GPU utilization, no cross-GPU overhead Testing: ✅ gemma3:12b loads on single GPU with correct inference 🤖 Generated with Claude Code (https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -170,6 +170,17 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
|
||||
graphFullOffload = graphPartialOffload
|
||||
}
|
||||
|
||||
// ollama37: Apply empirical correction factor for Tesla K80 (CC 3.7)
|
||||
// Measured: graph estimates are consistently 15-20% higher than actual usage
|
||||
// Example: gemma3:12b estimated 1.3 GiB, actual 1.1 GiB (85% of estimate)
|
||||
if gpus[0].Library == "cuda" && gpus[0].Compute == "3.7" {
|
||||
graphPartialOffload = (graphPartialOffload * 85) / 100
|
||||
graphFullOffload = (graphFullOffload * 85) / 100
|
||||
slog.Debug("applied CC 3.7 graph correction",
|
||||
"partial", format.HumanBytes2(graphPartialOffload),
|
||||
"full", format.HumanBytes2(graphFullOffload))
|
||||
}
|
||||
|
||||
// Output layer handled at the end if we have space
|
||||
if layer, ok := layers["output_norm"]; ok {
|
||||
memoryLayerOutput += layer.Size()
|
||||
@@ -238,9 +249,20 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
|
||||
// Primary GPU or single GPU: use full graph
|
||||
gpuGraphAllocations[i] = max(graphPartialOffload, graphFullOffload)
|
||||
}
|
||||
slog.Debug("graph allocation per GPU",
|
||||
"gpu", i,
|
||||
"graph_alloc", format.HumanBytes2(gpuGraphAllocations[i]),
|
||||
"is_multi_gpu", len(gpus) > 1,
|
||||
"is_secondary", len(gpus) > 1 && i < len(gpus)-1)
|
||||
}
|
||||
|
||||
// For all the layers, find where they can fit on the GPU(s)
|
||||
slog.Debug("starting layer placement",
|
||||
"total_layers", f.KV().BlockCount(),
|
||||
"num_gpus", len(gpus),
|
||||
"gpus_with_space", len(gpusWithSpace),
|
||||
"overhead", format.HumanBytes2(overhead))
|
||||
|
||||
for i := int(f.KV().BlockCount()) - 1; i >= 0; i-- {
|
||||
// Some models have inconsistent layer sizes
|
||||
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
|
||||
@@ -257,21 +279,38 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
|
||||
|
||||
// distribute the layers across the GPU(s) that have space
|
||||
// ollama37: Prefer loading on last GPU first (single-GPU preference for Tesla K80)
|
||||
placed := false
|
||||
for j := len(gpusWithSpace); j > 0; j-- {
|
||||
// Try GPUs in reverse order (highest index first) instead of round-robin
|
||||
g := gpusWithSpace[j-1]
|
||||
used := gpuAllocations[g.i] + gpuGraphAllocations[g.i] // ollama37: use per-GPU graph allocation
|
||||
required := overhead + used + layerSize
|
||||
|
||||
if i == int(f.KV().BlockCount())-1 || i == int(f.KV().BlockCount())-2 || i == 0 {
|
||||
// Debug log for first 2 and last layer
|
||||
slog.Debug("layer placement attempt",
|
||||
"layer", i,
|
||||
"gpu", g.i,
|
||||
"gpu_free", format.HumanBytes2(g.g.FreeMemory),
|
||||
"overhead", format.HumanBytes2(overhead),
|
||||
"used", format.HumanBytes2(used),
|
||||
"layer_size", format.HumanBytes2(layerSize),
|
||||
"required", format.HumanBytes2(required),
|
||||
"fits", g.g.FreeMemory > required)
|
||||
}
|
||||
|
||||
if g.g.FreeMemory > overhead+used+layerSize {
|
||||
gpuAllocations[g.i] += layerSize
|
||||
layerCounts[g.i]++
|
||||
layerCount++
|
||||
placed = true
|
||||
break
|
||||
} else {
|
||||
gpusWithSpace = append(gpusWithSpace[:j-1], gpusWithSpace[j:]...)
|
||||
}
|
||||
}
|
||||
|
||||
if len(gpusWithSpace) == 0 {
|
||||
if !placed {
|
||||
overflow += layerSize
|
||||
}
|
||||
}
|
||||
@@ -281,16 +320,32 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
|
||||
|
||||
// Determine if we need to consider output then find where it fits
|
||||
memoryLastLayer := memoryLayerOutput + ollamaEngineProjectorWeights + ollamaEngineProjectorGraph
|
||||
slog.Debug("output layer placement",
|
||||
"memory_last_layer", format.HumanBytes2(memoryLastLayer),
|
||||
"layer_count_before", layerCount,
|
||||
"block_count", f.KV().BlockCount(),
|
||||
"gpus_with_space", len(gpusWithSpace))
|
||||
|
||||
if memoryLastLayer > 0 {
|
||||
outputPlaced := false
|
||||
if opts.NumGPU < 0 || layerCount < opts.NumGPU {
|
||||
// ollama37: Prefer last GPU first (single-GPU preference for Tesla K80)
|
||||
for j := len(gpusWithSpace); j > 0; j-- {
|
||||
g := gpusWithSpace[j-1] // Try GPUs in reverse order
|
||||
used := gpuAllocations[g.i] + gpuGraphAllocations[g.i] // ollama37: use per-GPU graph allocation
|
||||
|
||||
// ollama37: Use actual graph allocation (not conservative estimate)
|
||||
// This allows tighter packing on single GPU
|
||||
used := gpuAllocations[g.i] + gpuGraphAllocations[g.i]
|
||||
|
||||
if g.g.FreeMemory > overhead+used+memoryLastLayer {
|
||||
gpuAllocations[g.i] += memoryLastLayer
|
||||
layerCounts[g.i]++
|
||||
layerCount++
|
||||
outputPlaced = true
|
||||
slog.Debug("output layer placed",
|
||||
"gpu", g.i,
|
||||
"layer_count_after", layerCount,
|
||||
"fully_loaded", layerCount >= int(f.KV().BlockCount())+1)
|
||||
break
|
||||
}
|
||||
}
|
||||
@@ -299,6 +354,10 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
|
||||
if layerCount < int(f.KV().BlockCount())+1 {
|
||||
fullyLoaded = false
|
||||
overflow += memoryLastLayer
|
||||
slog.Debug("output layer overflow",
|
||||
"layer_count", layerCount,
|
||||
"required", int(f.KV().BlockCount())+1,
|
||||
"output_placed", outputPlaced)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user