imageproc mllama refactor (#7537)

Refactor mllama image processing code, and add pixtral and qwen2vl
This commit is contained in:
Patrick Devine
2024-12-14 19:50:15 -08:00
committed by GitHub
parent b75ccfc5ec
commit 8c9fb8eb73
10 changed files with 828 additions and 125 deletions

111
model/imageproc/images.go Normal file
View File

@@ -0,0 +1,111 @@
package imageproc
import (
"image"
"image/color"
"golang.org/x/image/draw"
)
var (
ImageNetDefaultMean = [3]float32{0.485, 0.456, 0.406}
ImageNetDefaultSTD = [3]float32{0.229, 0.224, 0.225}
ImageNetStandardMean = [3]float32{0.5, 0.5, 0.5}
ImageNetStandardSTD = [3]float32{0.5, 0.5, 0.5}
ClipDefaultMean = [3]float32{0.48145466, 0.4578275, 0.40821073}
ClipDefaultSTD = [3]float32{0.26862954, 0.26130258, 0.27577711}
)
const (
ResizeBilinear = iota
ResizeNearestNeighbor
ResizeApproxBilinear
ResizeCatmullrom
)
// Composite returns an image with the alpha channel removed by drawing over a white background.
func Composite(img image.Image) image.Image {
dst := image.NewRGBA(img.Bounds())
white := color.RGBA{255, 255, 255, 255}
draw.Draw(dst, dst.Bounds(), &image.Uniform{white}, image.Point{}, draw.Src)
draw.Draw(dst, dst.Bounds(), img, img.Bounds().Min, draw.Over)
return dst
}
// Resize returns an image which has been scaled to a new size.
func Resize(img image.Image, newSize image.Point, method int) image.Image {
dst := image.NewRGBA(image.Rect(0, 0, newSize.X, newSize.Y))
kernels := map[int]draw.Interpolator{
ResizeBilinear: draw.BiLinear,
ResizeNearestNeighbor: draw.NearestNeighbor,
ResizeApproxBilinear: draw.ApproxBiLinear,
ResizeCatmullrom: draw.CatmullRom,
}
kernel, ok := kernels[method]
if !ok {
panic("no resizing method found")
}
kernel.Scale(dst, dst.Rect, img, img.Bounds(), draw.Over, nil)
return dst
}
// Normalize returns a slice of float32 containing each of the r, g, b values for an image normalized around a value.
func Normalize(img image.Image, mean, std [3]float32, rescale bool, channelFirst bool) []float32 {
var pixelVals []float32
bounds := img.Bounds()
if channelFirst {
var rVals, gVals, bVals []float32
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
c := img.At(x, y)
r, g, b, _ := c.RGBA()
var rVal, gVal, bVal float32
if rescale {
rVal = float32(r>>8) / 255.0
gVal = float32(g>>8) / 255.0
bVal = float32(b>>8) / 255.0
}
rVal = (rVal - mean[0]) / std[0]
gVal = (gVal - mean[1]) / std[1]
bVal = (bVal - mean[2]) / std[2]
rVals = append(rVals, rVal)
gVals = append(gVals, gVal)
bVals = append(bVals, bVal)
}
}
pixelVals = append(pixelVals, rVals...)
pixelVals = append(pixelVals, gVals...)
pixelVals = append(pixelVals, bVals...)
} else {
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
c := img.At(x, y)
r, g, b, _ := c.RGBA()
var rVal, gVal, bVal float32
if rescale {
rVal = float32(r>>8) / 255.0
gVal = float32(g>>8) / 255.0
bVal = float32(b>>8) / 255.0
}
rVal = (rVal - mean[0]) / std[0]
gVal = (gVal - mean[1]) / std[1]
bVal = (bVal - mean[2]) / std[2]
pixelVals = append(pixelVals, rVal, gVal, bVal)
}
}
}
return pixelVals
}

View File

@@ -0,0 +1,177 @@
package imageproc
import (
"image"
"image/color"
"image/draw"
"reflect"
"testing"
)
func createImage(width, height int, fillCol color.RGBA) image.Image {
img := image.NewRGBA(image.Rect(0, 0, width, height))
draw.Draw(img, img.Bounds(), &image.Uniform{fillCol}, image.Point{}, draw.Src)
return img
}
func TestComposite(t *testing.T) {
tests := []struct {
name string
img image.Image
expectedRGBA color.RGBA
}{
{
name: "Transparent image",
img: createImage(5, 5, color.RGBA{0, 0, 0, 0}),
expectedRGBA: color.RGBA{255, 255, 255, 255},
},
{
name: "Solid red image",
img: createImage(5, 5, color.RGBA{255, 0, 0, 255}),
expectedRGBA: color.RGBA{255, 0, 0, 255},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
resultImg := Composite(tt.img)
// Check the pixel values in the resulting image
for x := range resultImg.Bounds().Dx() {
for y := range resultImg.Bounds().Dy() {
r, g, b, a := resultImg.At(x, y).RGBA()
expectedR, expectedG, expectedB, expectedA := tt.expectedRGBA.RGBA()
if r != expectedR || g != expectedG || b != expectedB || a != expectedA {
t.Errorf("Pixel mismatch at (%d, %d): got (%d, %d, %d, %d), want (%d, %d, %d, %d)",
x, y, r, g, b, a, expectedR, expectedG, expectedB, expectedA)
}
}
}
})
}
}
func TestResize(t *testing.T) {
tests := []struct {
name string
img image.Image
newSize image.Point
method int
expected image.Point
}{
{
name: "Resize with bilinear interpolation",
img: createImage(5, 5, color.RGBA{255, 0, 0, 255}),
newSize: image.Point{10, 10},
method: ResizeBilinear,
expected: image.Point{10, 10},
},
{
name: "Resize with nearest neighbor",
img: createImage(10, 10, color.RGBA{0, 255, 0, 255}),
newSize: image.Point{5, 5},
method: ResizeNearestNeighbor,
expected: image.Point{5, 5},
},
{
name: "Resize with catmullrom",
img: createImage(1024, 1024, color.RGBA{0, 0, 255, 255}),
newSize: image.Point{10, 10},
method: ResizeCatmullrom,
expected: image.Point{10, 10},
},
{
name: "Resize with approx bilinear",
img: createImage(1024, 768, color.RGBA{100, 100, 100, 255}),
newSize: image.Point{4, 3},
method: ResizeApproxBilinear,
expected: image.Point{4, 3},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
resizedImg := Resize(tt.img, tt.newSize, tt.method)
if resizedImg.Bounds().Dx() != tt.expected.X || resizedImg.Bounds().Dy() != tt.expected.Y {
t.Errorf("Unexpected size for resized image: got (%d, %d), want (%d, %d)",
resizedImg.Bounds().Dx(), resizedImg.Bounds().Dy(), tt.expected.X, tt.expected.Y)
}
})
}
}
func TestResizeInvalidMethod(t *testing.T) {
defer func() {
if r := recover(); r == nil {
t.Errorf("Expected panic for invalid resizing method, but did not panic")
}
}()
img := createImage(10, 10, color.RGBA{0, 0, 0, 255})
Resize(img, image.Point{5, 5}, -1)
}
func TestNormalize(t *testing.T) {
tests := []struct {
name string
img image.Image
mean [3]float32
std [3]float32
rescale bool
channelFirst bool
expected []float32
}{
{
name: "Rescale with channel first",
img: createImage(2, 2, color.RGBA{128, 128, 128, 255}),
mean: ImageNetStandardMean,
std: ImageNetStandardSTD,
rescale: true,
channelFirst: true,
expected: []float32{
0.003921628, 0.003921628, 0.003921628, 0.003921628, // R values
0.003921628, 0.003921628, 0.003921628, 0.003921628, // G values
0.003921628, 0.003921628, 0.003921628, 0.003921628, // B values
},
},
{
name: "Rescale without channel first",
img: createImage(2, 2, color.RGBA{255, 0, 0, 255}),
mean: [3]float32{0.0, 0.0, 0.0},
std: [3]float32{1.0, 1.0, 1.0},
rescale: true,
channelFirst: false,
expected: []float32{
1.0, 0.0, 0.0,
1.0, 0.0, 0.0,
1.0, 0.0, 0.0,
1.0, 0.0, 0.0,
},
},
{
name: "No rescale with mean/std adjustment",
img: createImage(2, 2, color.RGBA{100, 150, 200, 255}),
mean: ClipDefaultMean,
std: ClipDefaultSTD,
rescale: false,
channelFirst: false,
expected: []float32{
-1.7922626, -1.7520971, -1.4802198,
-1.7922626, -1.7520971, -1.4802198,
-1.7922626, -1.7520971, -1.4802198,
-1.7922626, -1.7520971, -1.4802198,
},
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
result := Normalize(tt.img, tt.mean, tt.std, tt.rescale, tt.channelFirst)
if !reflect.DeepEqual(result, tt.expected) {
t.Errorf("Test %s failed: got %v, want %v", tt.name, result, tt.expected)
}
})
}
}