mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-10 15:57:04 +00:00
Add llama2 / torch models for ollama create (#3607)
This commit is contained in:
@@ -1,21 +1,16 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"cmp"
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/d4l3k/go-bfloat16"
|
||||
"github.com/mitchellh/mapstructure"
|
||||
"github.com/x448/float16"
|
||||
"google.golang.org/protobuf/proto"
|
||||
|
||||
"github.com/ollama/ollama/convert/sentencepiece"
|
||||
@@ -45,157 +40,45 @@ type ByteOrder interface {
|
||||
binary.AppendByteOrder
|
||||
}
|
||||
|
||||
type MetaData struct {
|
||||
Type string `mapstructure:"dtype"`
|
||||
Shape []int `mapstructure:"shape"`
|
||||
Offsets []int `mapstructure:"data_offsets"`
|
||||
}
|
||||
|
||||
type ModelArch interface {
|
||||
GetTensors() error
|
||||
LoadVocab() error
|
||||
WriteGGUF() (string, error)
|
||||
}
|
||||
|
||||
type ModelFormat interface {
|
||||
GetLayerName(string) (string, error)
|
||||
GetTensors(string, *Params) ([]llm.Tensor, error)
|
||||
GetParams(string) (*Params, error)
|
||||
GetModelArch(string, string, *Params) (ModelArch, error)
|
||||
}
|
||||
|
||||
type ModelData struct {
|
||||
Path string
|
||||
Name string
|
||||
Params *Params
|
||||
Vocab *Vocab
|
||||
Tensors []llm.Tensor
|
||||
Format ModelFormat
|
||||
}
|
||||
|
||||
func ReadSafeTensors(fn string, offset uint64, params *Params) ([]llm.Tensor, uint64, error) {
|
||||
f, err := os.Open(fn)
|
||||
if err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var jsonSize uint64
|
||||
if err := binary.Read(f, binary.LittleEndian, &jsonSize); err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
buf := make([]byte, jsonSize)
|
||||
_, err = io.ReadFull(f, buf)
|
||||
if err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
d := json.NewDecoder(bytes.NewBuffer(buf))
|
||||
d.UseNumber()
|
||||
var parsed map[string]interface{}
|
||||
if err = d.Decode(&parsed); err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
var keys []string
|
||||
for k := range parsed {
|
||||
keys = append(keys, k)
|
||||
}
|
||||
|
||||
slices.Sort(keys)
|
||||
|
||||
slog.Info("converting layers")
|
||||
|
||||
var tensors []llm.Tensor
|
||||
for _, k := range keys {
|
||||
vals := parsed[k].(map[string]interface{})
|
||||
var data MetaData
|
||||
if err = mapstructure.Decode(vals, &data); err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
var size uint64
|
||||
var kind uint32
|
||||
switch len(data.Shape) {
|
||||
case 0:
|
||||
// metadata
|
||||
continue
|
||||
case 1:
|
||||
// convert to float32
|
||||
kind = 0
|
||||
size = uint64(data.Shape[0] * 4)
|
||||
case 2:
|
||||
// convert to float16
|
||||
kind = 1
|
||||
size = uint64(data.Shape[0] * data.Shape[1] * 2)
|
||||
}
|
||||
|
||||
ggufName, err := GetTensorName(k)
|
||||
if err != nil {
|
||||
slog.Error("%v", err)
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
shape := []uint64{0, 0, 0, 0}
|
||||
for i := range data.Shape {
|
||||
shape[i] = uint64(data.Shape[i])
|
||||
}
|
||||
|
||||
t := llm.Tensor{
|
||||
Name: ggufName,
|
||||
Kind: kind,
|
||||
Offset: offset,
|
||||
Shape: shape[:],
|
||||
}
|
||||
|
||||
t.WriterTo = safetensorWriterTo{
|
||||
t: &t,
|
||||
params: params,
|
||||
bo: params.ByteOrder,
|
||||
filename: fn,
|
||||
start: uint64(data.Offsets[0]),
|
||||
end: uint64(data.Offsets[1]),
|
||||
padding: 8 + jsonSize,
|
||||
}
|
||||
|
||||
slog.Debug(fmt.Sprintf("%v", t))
|
||||
tensors = append(tensors, t)
|
||||
offset += size
|
||||
}
|
||||
return tensors, offset, nil
|
||||
}
|
||||
|
||||
func GetSafeTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
|
||||
var tensors []llm.Tensor
|
||||
files, err := filepath.Glob(filepath.Join(dirpath, "/model-*.safetensors"))
|
||||
func GetModelFormat(dirname string) (ModelFormat, error) {
|
||||
files, err := filepath.Glob(filepath.Join(dirname, "*"))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var offset uint64
|
||||
for _, f := range files {
|
||||
var t []llm.Tensor
|
||||
var err error
|
||||
t, offset, err = ReadSafeTensors(f, offset, params)
|
||||
if err != nil {
|
||||
slog.Error("%v", err)
|
||||
return nil, err
|
||||
for _, fn := range files {
|
||||
slog.Debug(fmt.Sprintf("file = %s", fn))
|
||||
if strings.HasSuffix(fn, ".safetensors") {
|
||||
return &SafetensorFormat{}, nil
|
||||
} else if strings.HasSuffix(fn, ".bin") {
|
||||
slog.Debug("model is torch")
|
||||
return &TorchFormat{}, nil
|
||||
}
|
||||
tensors = append(tensors, t...)
|
||||
}
|
||||
return tensors, nil
|
||||
}
|
||||
|
||||
func GetParams(dirpath string) (*Params, error) {
|
||||
f, err := os.Open(filepath.Join(dirpath, "config.json"))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var params Params
|
||||
|
||||
d := json.NewDecoder(f)
|
||||
err = d.Decode(¶ms)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
params.ByteOrder = binary.LittleEndian
|
||||
return ¶ms, nil
|
||||
return nil, fmt.Errorf("couldn't determine model format")
|
||||
}
|
||||
|
||||
// Details on gguf's tokenizer can be found at:
|
||||
@@ -206,7 +89,7 @@ type Vocab struct {
|
||||
Types []int32
|
||||
}
|
||||
|
||||
func LoadSentencePieceTokens(dirpath string, vocabSize int) (*Vocab, error) {
|
||||
func LoadSentencePieceTokens(dirpath string, params *Params) (*Vocab, error) {
|
||||
slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model")))
|
||||
in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model"))
|
||||
if err != nil {
|
||||
@@ -286,8 +169,8 @@ func LoadSentencePieceTokens(dirpath string, vocabSize int) (*Vocab, error) {
|
||||
}
|
||||
slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens)))
|
||||
|
||||
if vocabSize > len(v.Tokens) {
|
||||
missingTokens := vocabSize - len(v.Tokens)
|
||||
if params.VocabSize > len(v.Tokens) {
|
||||
missingTokens := params.VocabSize - len(v.Tokens)
|
||||
slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens))
|
||||
for cnt := 0; cnt < missingTokens; cnt++ {
|
||||
v.Tokens = append(v.Tokens, fmt.Sprintf("<dummy%05d>", cnt+1))
|
||||
@@ -298,136 +181,3 @@ func LoadSentencePieceTokens(dirpath string, vocabSize int) (*Vocab, error) {
|
||||
|
||||
return v, nil
|
||||
}
|
||||
|
||||
func GetTensorName(n string) (string, error) {
|
||||
tMap := map[string]string{
|
||||
"model.embed_tokens.weight": "token_embd.weight",
|
||||
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
|
||||
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
|
||||
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
|
||||
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
|
||||
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
|
||||
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
|
||||
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
|
||||
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
|
||||
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
|
||||
"lm_head.weight": "output.weight",
|
||||
"model.norm.weight": "output_norm.weight",
|
||||
}
|
||||
|
||||
v, ok := tMap[n]
|
||||
if ok {
|
||||
return v, nil
|
||||
}
|
||||
|
||||
// quick hack to rename the layers to gguf format
|
||||
for k, v := range tMap {
|
||||
re := regexp.MustCompile(k)
|
||||
newName := re.ReplaceAllString(n, v)
|
||||
if newName != n {
|
||||
return newName, nil
|
||||
}
|
||||
}
|
||||
|
||||
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
|
||||
}
|
||||
|
||||
type safetensorWriterTo struct {
|
||||
t *llm.Tensor
|
||||
|
||||
params *Params
|
||||
bo ByteOrder
|
||||
|
||||
filename string
|
||||
|
||||
start, end, padding uint64
|
||||
handler func(w io.Writer, r safetensorWriterTo, f *os.File) error
|
||||
}
|
||||
|
||||
func (r safetensorWriterTo) WriteTo(w io.Writer) (n int64, err error) {
|
||||
f, err := os.Open(r.filename)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
if _, err = f.Seek(int64(r.padding+r.start), 0); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
// use the handler if one is present
|
||||
if r.handler != nil {
|
||||
return 0, r.handler(w, r, f)
|
||||
}
|
||||
|
||||
remaining := r.end - r.start
|
||||
|
||||
bufSize := uint64(10240)
|
||||
var finished bool
|
||||
for {
|
||||
data := make([]byte, min(bufSize, remaining))
|
||||
|
||||
b, err := io.ReadFull(f, data)
|
||||
remaining -= uint64(b)
|
||||
|
||||
if err == io.EOF || remaining <= 0 {
|
||||
finished = true
|
||||
} else if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
// convert bfloat16 -> ieee float32
|
||||
tDataF32 := bfloat16.DecodeFloat32(data)
|
||||
|
||||
switch r.t.Kind {
|
||||
case 0:
|
||||
if err := binary.Write(w, r.bo, tDataF32); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
case 1:
|
||||
// convert float32 -> float16
|
||||
tempBuf := make([]uint16, len(data)/2)
|
||||
for cnt, v := range tDataF32 {
|
||||
tDataF16 := float16.Fromfloat32(v)
|
||||
tempBuf[cnt] = uint16(tDataF16)
|
||||
}
|
||||
if err := binary.Write(w, binary.LittleEndian, tempBuf); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
if finished {
|
||||
break
|
||||
}
|
||||
}
|
||||
return 0, nil
|
||||
}
|
||||
|
||||
func GetModelArchFromParams(name, dirPath string, params *Params) (ModelArch, error) {
|
||||
switch len(params.Architectures) {
|
||||
case 0:
|
||||
return nil, fmt.Errorf("No architecture specified to convert")
|
||||
case 1:
|
||||
switch params.Architectures[0] {
|
||||
case "MistralForCausalLM":
|
||||
return &MistralModel{
|
||||
ModelData{
|
||||
Name: name,
|
||||
Path: dirPath,
|
||||
Params: params,
|
||||
},
|
||||
}, nil
|
||||
case "GemmaForCausalLM":
|
||||
return &GemmaModel{
|
||||
ModelData{
|
||||
Name: name,
|
||||
Path: dirPath,
|
||||
Params: params,
|
||||
},
|
||||
}, nil
|
||||
default:
|
||||
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
|
||||
}
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf("Unknown error")
|
||||
}
|
||||
|
||||
@@ -65,13 +65,14 @@ func addOnes(data []float32, vectorSize int) ([]float32, error) {
|
||||
}
|
||||
|
||||
func (m *GemmaModel) GetTensors() error {
|
||||
t, err := GetSafeTensors(m.Path, m.Params)
|
||||
t, err := m.Format.GetTensors(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
m.Tensors = []llm.Tensor{}
|
||||
slog.Debug(fmt.Sprintf("Total tensors: %d", len(t)))
|
||||
|
||||
m.Tensors = []llm.Tensor{}
|
||||
for _, l := range t {
|
||||
if strings.HasSuffix(l.Name, "norm.weight") {
|
||||
wt := l.WriterTo.(safetensorWriterTo)
|
||||
@@ -85,7 +86,7 @@ func (m *GemmaModel) GetTensors() error {
|
||||
}
|
||||
|
||||
func (m *GemmaModel) LoadVocab() error {
|
||||
v, err := LoadSentencePieceTokens(m.Path, m.Params.VocabSize)
|
||||
v, err := LoadSentencePieceTokens(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
176
convert/llama.go
Normal file
176
convert/llama.go
Normal file
@@ -0,0 +1,176 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"os"
|
||||
"regexp"
|
||||
"strings"
|
||||
|
||||
"github.com/nlpodyssey/gopickle/pytorch"
|
||||
"github.com/pdevine/tensor"
|
||||
"github.com/pdevine/tensor/native"
|
||||
"github.com/x448/float16"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type LlamaModel struct {
|
||||
ModelData
|
||||
}
|
||||
|
||||
func llamaLayerHandler(w io.Writer, r torchWriterTo) error {
|
||||
slog.Debug(fmt.Sprintf("repacking layer '%s'", r.t.Name))
|
||||
|
||||
data := r.storage.(*pytorch.HalfStorage).Data
|
||||
tData := make([]uint16, len(data))
|
||||
for cnt, v := range data {
|
||||
tData[cnt] = uint16(float16.Fromfloat32(v))
|
||||
}
|
||||
|
||||
var err error
|
||||
var heads uint32
|
||||
if strings.Contains(r.t.Name, "attn_q") {
|
||||
heads = uint32(r.params.AttentionHeads)
|
||||
} else if strings.Contains(r.t.Name, "attn_k") {
|
||||
heads = uint32(r.params.KeyValHeads)
|
||||
if heads == 0 {
|
||||
heads = uint32(r.params.AttentionHeads)
|
||||
}
|
||||
} else {
|
||||
return fmt.Errorf("unknown layer type")
|
||||
}
|
||||
|
||||
slog.Debug(fmt.Sprintf("heads = %d", heads))
|
||||
|
||||
tData, err = llamaRepack(tData, int(heads), r.t.Shape)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if err = binary.Write(w, r.bo, tData); err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func llamaRepack(data []uint16, heads int, shape []uint64) ([]uint16, error) {
|
||||
n := tensor.New(tensor.WithShape(int(shape[0]), int(shape[1])), tensor.WithBacking(data))
|
||||
origShape := n.Shape().Clone()
|
||||
|
||||
// reshape the tensor and swap axes 1 and 2 to unpack the layer for gguf
|
||||
if err := n.Reshape(heads, 2, origShape[0]/heads/2, origShape[1]); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.T(0, 2, 1, 3); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Reshape(origShape...); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
if err := n.Transpose(); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
newN, err := native.SelectU16(n, 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var fullTensor []uint16
|
||||
for _, v := range newN {
|
||||
fullTensor = append(fullTensor, v...)
|
||||
}
|
||||
return fullTensor, nil
|
||||
}
|
||||
|
||||
func (m *LlamaModel) GetTensors() error {
|
||||
t, err := m.Format.GetTensors(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
m.Tensors = []llm.Tensor{}
|
||||
|
||||
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
|
||||
re, err := regexp.Compile(pattern)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
for _, l := range t {
|
||||
matches := re.FindAllStringSubmatch(l.Name, -1)
|
||||
if len(matches) > 0 {
|
||||
slog.Debug(fmt.Sprintf("setting handler for: %s", l.Name))
|
||||
wt := l.WriterTo.(torchWriterTo)
|
||||
wt.handler = llamaLayerHandler
|
||||
l.WriterTo = wt
|
||||
}
|
||||
m.Tensors = append(m.Tensors, l)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *LlamaModel) LoadVocab() error {
|
||||
var v *Vocab
|
||||
var err error
|
||||
|
||||
slog.Debug("loading vocab")
|
||||
v, err = LoadSentencePieceTokens(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
slog.Debug("vocab loaded")
|
||||
|
||||
m.Vocab = v
|
||||
return nil
|
||||
}
|
||||
|
||||
func (m *LlamaModel) WriteGGUF() (string, error) {
|
||||
kv := llm.KV{
|
||||
"general.architecture": "llama",
|
||||
"general.name": m.Name,
|
||||
"llama.vocab_size": uint32(len(m.Vocab.Tokens)),
|
||||
"llama.context_length": uint32(m.Params.ContextSize),
|
||||
"llama.embedding_length": uint32(m.Params.HiddenSize),
|
||||
"llama.block_count": uint32(m.Params.HiddenLayers),
|
||||
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
|
||||
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
|
||||
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
|
||||
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
|
||||
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
|
||||
"general.file_type": uint32(1),
|
||||
"tokenizer.ggml.model": "llama",
|
||||
|
||||
"tokenizer.ggml.tokens": m.Vocab.Tokens,
|
||||
"tokenizer.ggml.scores": m.Vocab.Scores,
|
||||
"tokenizer.ggml.token_type": m.Vocab.Types,
|
||||
|
||||
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
|
||||
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
|
||||
"tokenizer.ggml.unknown_token_id": uint32(0),
|
||||
"tokenizer.ggml.add_bos_token": true,
|
||||
"tokenizer.ggml.add_eos_token": false,
|
||||
}
|
||||
|
||||
f, err := os.CreateTemp("", "ollama-gguf")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
mod := llm.NewGGUFV3(m.Params.ByteOrder)
|
||||
if err := mod.Encode(f, kv, m.Tensors); err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
slog.Debug(fmt.Sprintf("gguf file = %s", f.Name()))
|
||||
|
||||
return f.Name(), nil
|
||||
}
|
||||
@@ -97,7 +97,7 @@ func repack(data []uint16, heads int, shape []uint64) ([]uint16, error) {
|
||||
}
|
||||
|
||||
func (m *MistralModel) GetTensors() error {
|
||||
t, err := GetSafeTensors(m.Path, m.Params)
|
||||
t, err := m.Format.GetTensors(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -124,7 +124,7 @@ func (m *MistralModel) GetTensors() error {
|
||||
}
|
||||
|
||||
func (m *MistralModel) LoadVocab() error {
|
||||
v, err := LoadSentencePieceTokens(m.Path, m.Params.VocabSize)
|
||||
v, err := LoadSentencePieceTokens(m.Path, m.Params)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
304
convert/safetensors.go
Normal file
304
convert/safetensors.go
Normal file
@@ -0,0 +1,304 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"slices"
|
||||
|
||||
"github.com/d4l3k/go-bfloat16"
|
||||
"github.com/mitchellh/mapstructure"
|
||||
"github.com/x448/float16"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type safetensorWriterTo struct {
|
||||
t *llm.Tensor
|
||||
|
||||
params *Params
|
||||
bo ByteOrder
|
||||
|
||||
filename string
|
||||
|
||||
start, end, padding uint64
|
||||
handler func(w io.Writer, r safetensorWriterTo, f *os.File) error
|
||||
}
|
||||
|
||||
type tensorMetaData struct {
|
||||
Type string `mapstructure:"dtype"`
|
||||
Shape []int `mapstructure:"shape"`
|
||||
Offsets []int `mapstructure:"data_offsets"`
|
||||
}
|
||||
|
||||
type SafetensorFormat struct{}
|
||||
|
||||
func (m *SafetensorFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
|
||||
slog.Debug("getting tensor data")
|
||||
var tensors []llm.Tensor
|
||||
files, err := filepath.Glob(filepath.Join(dirpath, "/model-*.safetensors"))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var offset uint64
|
||||
for _, f := range files {
|
||||
var t []llm.Tensor
|
||||
var err error
|
||||
t, offset, err = m.readTensors(f, offset, params)
|
||||
if err != nil {
|
||||
slog.Error("%v", err)
|
||||
return nil, err
|
||||
}
|
||||
tensors = append(tensors, t...)
|
||||
}
|
||||
slog.Debug(fmt.Sprintf("all tensors = %d", len(tensors)))
|
||||
return tensors, nil
|
||||
}
|
||||
|
||||
func (m *SafetensorFormat) readTensors(fn string, offset uint64, params *Params) ([]llm.Tensor, uint64, error) {
|
||||
f, err := os.Open(fn)
|
||||
if err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var jsonSize uint64
|
||||
if err := binary.Read(f, binary.LittleEndian, &jsonSize); err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
buf := make([]byte, jsonSize)
|
||||
_, err = io.ReadFull(f, buf)
|
||||
if err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
d := json.NewDecoder(bytes.NewBuffer(buf))
|
||||
d.UseNumber()
|
||||
var parsed map[string]interface{}
|
||||
if err = d.Decode(&parsed); err != nil {
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
var keys []string
|
||||
for k := range parsed {
|
||||
keys = append(keys, k)
|
||||
}
|
||||
|
||||
slices.Sort(keys)
|
||||
|
||||
slog.Info("converting layers")
|
||||
|
||||
var tensors []llm.Tensor
|
||||
for _, k := range keys {
|
||||
vals := parsed[k].(map[string]interface{})
|
||||
var data tensorMetaData
|
||||
if err = mapstructure.Decode(vals, &data); err != nil {
|
||||
slog.Error("couldn't decode properly")
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
slog.Debug(fmt.Sprintf("metadata = %#v", data))
|
||||
var size uint64
|
||||
var kind uint32
|
||||
switch len(data.Shape) {
|
||||
case 0:
|
||||
// metadata
|
||||
continue
|
||||
case 1:
|
||||
// convert to float32
|
||||
kind = 0
|
||||
size = uint64(data.Shape[0] * 4)
|
||||
case 2:
|
||||
// convert to float16
|
||||
kind = 1
|
||||
size = uint64(data.Shape[0] * data.Shape[1] * 2)
|
||||
}
|
||||
|
||||
ggufName, err := m.GetLayerName(k)
|
||||
if err != nil {
|
||||
slog.Error("%v", err)
|
||||
return nil, 0, err
|
||||
}
|
||||
|
||||
shape := []uint64{0, 0, 0, 0}
|
||||
for i := range data.Shape {
|
||||
shape[i] = uint64(data.Shape[i])
|
||||
}
|
||||
|
||||
t := llm.Tensor{
|
||||
Name: ggufName,
|
||||
Kind: kind,
|
||||
Offset: offset,
|
||||
Shape: shape[:],
|
||||
}
|
||||
|
||||
t.WriterTo = safetensorWriterTo{
|
||||
t: &t,
|
||||
params: params,
|
||||
bo: params.ByteOrder,
|
||||
filename: fn,
|
||||
start: uint64(data.Offsets[0]),
|
||||
end: uint64(data.Offsets[1]),
|
||||
padding: 8 + jsonSize,
|
||||
}
|
||||
|
||||
tensors = append(tensors, t)
|
||||
offset += size
|
||||
}
|
||||
slog.Debug(fmt.Sprintf("total tensors for file = %d", len(tensors)))
|
||||
slog.Debug(fmt.Sprintf("offset = %d", offset))
|
||||
return tensors, offset, nil
|
||||
}
|
||||
|
||||
func (m *SafetensorFormat) GetParams(dirpath string) (*Params, error) {
|
||||
f, err := os.Open(filepath.Join(dirpath, "config.json"))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
var params Params
|
||||
|
||||
d := json.NewDecoder(f)
|
||||
err = d.Decode(¶ms)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
params.ByteOrder = binary.LittleEndian
|
||||
return ¶ms, nil
|
||||
}
|
||||
|
||||
func (m *SafetensorFormat) GetLayerName(n string) (string, error) {
|
||||
directMap := map[string]string{
|
||||
"model.embed_tokens.weight": "token_embd.weight",
|
||||
"lm_head.weight": "output.weight",
|
||||
"model.norm.weight": "output_norm.weight",
|
||||
}
|
||||
|
||||
tMap := map[string]string{
|
||||
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
|
||||
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
|
||||
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
|
||||
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
|
||||
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
|
||||
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
|
||||
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
|
||||
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
|
||||
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
|
||||
}
|
||||
|
||||
v, ok := directMap[n]
|
||||
if ok {
|
||||
return v, nil
|
||||
}
|
||||
|
||||
// quick hack to rename the layers to gguf format
|
||||
for k, v := range tMap {
|
||||
re := regexp.MustCompile(k)
|
||||
newName := re.ReplaceAllString(n, v)
|
||||
if newName != n {
|
||||
return newName, nil
|
||||
}
|
||||
}
|
||||
|
||||
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
|
||||
}
|
||||
|
||||
func (r safetensorWriterTo) WriteTo(w io.Writer) (n int64, err error) {
|
||||
f, err := os.Open(r.filename)
|
||||
if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
if _, err = f.Seek(int64(r.padding+r.start), 0); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
// use the handler if one is present
|
||||
if r.handler != nil {
|
||||
return 0, r.handler(w, r, f)
|
||||
}
|
||||
|
||||
remaining := r.end - r.start
|
||||
|
||||
bufSize := uint64(10240)
|
||||
var finished bool
|
||||
for {
|
||||
data := make([]byte, min(bufSize, remaining))
|
||||
|
||||
b, err := io.ReadFull(f, data)
|
||||
remaining -= uint64(b)
|
||||
|
||||
if err == io.EOF || remaining <= 0 {
|
||||
finished = true
|
||||
} else if err != nil {
|
||||
return 0, err
|
||||
}
|
||||
|
||||
// convert bfloat16 -> ieee float32
|
||||
tDataF32 := bfloat16.DecodeFloat32(data)
|
||||
|
||||
switch r.t.Kind {
|
||||
case 0:
|
||||
if err := binary.Write(w, r.bo, tDataF32); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
case 1:
|
||||
// convert float32 -> float16
|
||||
tempBuf := make([]uint16, len(data)/2)
|
||||
for cnt, v := range tDataF32 {
|
||||
tDataF16 := float16.Fromfloat32(v)
|
||||
tempBuf[cnt] = uint16(tDataF16)
|
||||
}
|
||||
if err := binary.Write(w, r.bo, tempBuf); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
if finished {
|
||||
break
|
||||
}
|
||||
}
|
||||
return 0, nil
|
||||
}
|
||||
|
||||
func (m *SafetensorFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
|
||||
switch len(params.Architectures) {
|
||||
case 0:
|
||||
return nil, fmt.Errorf("No architecture specified to convert")
|
||||
case 1:
|
||||
switch params.Architectures[0] {
|
||||
case "MistralForCausalLM":
|
||||
return &MistralModel{
|
||||
ModelData{
|
||||
Name: name,
|
||||
Path: dirPath,
|
||||
Params: params,
|
||||
Format: m,
|
||||
},
|
||||
}, nil
|
||||
case "GemmaForCausalLM":
|
||||
return &GemmaModel{
|
||||
ModelData{
|
||||
Name: name,
|
||||
Path: dirPath,
|
||||
Params: params,
|
||||
Format: m,
|
||||
},
|
||||
}, nil
|
||||
default:
|
||||
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
|
||||
}
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf("Unknown error")
|
||||
}
|
||||
286
convert/torch.go
Normal file
286
convert/torch.go
Normal file
@@ -0,0 +1,286 @@
|
||||
package convert
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"io"
|
||||
"log/slog"
|
||||
"os"
|
||||
"path/filepath"
|
||||
"regexp"
|
||||
"strings"
|
||||
|
||||
"github.com/nlpodyssey/gopickle/pytorch"
|
||||
"github.com/nlpodyssey/gopickle/types"
|
||||
"github.com/x448/float16"
|
||||
|
||||
"github.com/ollama/ollama/llm"
|
||||
)
|
||||
|
||||
type torchWriterTo struct {
|
||||
t *llm.Tensor
|
||||
|
||||
params *Params
|
||||
bo ByteOrder
|
||||
|
||||
storage pytorch.StorageInterface
|
||||
handler func(w io.Writer, r torchWriterTo) error
|
||||
}
|
||||
|
||||
type TorchFormat struct{}
|
||||
|
||||
func (tf *TorchFormat) GetTensors(dirpath string, params *Params) ([]llm.Tensor, error) {
|
||||
slog.Debug("getting torch tensors")
|
||||
|
||||
files, err := filepath.Glob(filepath.Join(dirpath, "pytorch_model-*.bin"))
|
||||
if err != nil {
|
||||
slog.Error("didn't find any torch files")
|
||||
return nil, err
|
||||
}
|
||||
|
||||
var offset uint64
|
||||
|
||||
var tensors []llm.Tensor
|
||||
for _, fn := range files {
|
||||
m, err := pytorch.Load(fn)
|
||||
if err != nil {
|
||||
slog.Error(fmt.Sprintf("error unpickling: %q", err))
|
||||
return []llm.Tensor{}, err
|
||||
}
|
||||
|
||||
for _, k := range m.(*types.Dict).Keys() {
|
||||
if strings.HasSuffix(k.(string), "self_attn.rotary_emb.inv_freq") {
|
||||
continue
|
||||
}
|
||||
|
||||
t, _ := m.(*types.Dict).Get(k)
|
||||
tshape := t.(*pytorch.Tensor).Size
|
||||
|
||||
var size uint64
|
||||
var kind uint32
|
||||
switch len(tshape) {
|
||||
case 0:
|
||||
continue
|
||||
case 1:
|
||||
// convert to float32
|
||||
kind = 0
|
||||
size = uint64(tshape[0] * 4)
|
||||
case 2:
|
||||
// convert to float16
|
||||
kind = 1
|
||||
size = uint64(tshape[0] * tshape[1] * 2)
|
||||
}
|
||||
|
||||
ggufName, err := tf.GetLayerName(k.(string))
|
||||
if err != nil {
|
||||
slog.Error("%v", err)
|
||||
return nil, err
|
||||
}
|
||||
slog.Debug(fmt.Sprintf("finding name for '%s' -> '%s'", k.(string), ggufName))
|
||||
|
||||
shape := []uint64{0, 0, 0, 0}
|
||||
for i := range tshape {
|
||||
shape[i] = uint64(tshape[i])
|
||||
}
|
||||
|
||||
tensor := llm.Tensor{
|
||||
Name: ggufName,
|
||||
Kind: kind,
|
||||
Offset: offset, // calculate the offset
|
||||
Shape: shape[:],
|
||||
}
|
||||
|
||||
tensor.WriterTo = torchWriterTo{
|
||||
t: &tensor,
|
||||
params: params,
|
||||
bo: params.ByteOrder,
|
||||
storage: t.(*pytorch.Tensor).Source,
|
||||
}
|
||||
|
||||
tensors = append(tensors, tensor)
|
||||
offset += size
|
||||
}
|
||||
}
|
||||
|
||||
return tensors, nil
|
||||
|
||||
}
|
||||
|
||||
func getAltParams(dirpath string) (*Params, error) {
|
||||
f, err := os.Open(filepath.Join(dirpath, "params.json"))
|
||||
if err != nil {
|
||||
slog.Error("no params.json")
|
||||
return nil, err
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
type TorchParams struct {
|
||||
HiddenSize int `json:"dim"`
|
||||
AttentionHeads int `json:"n_heads"`
|
||||
KeyValHeads int `json:"n_kv_heads"`
|
||||
HiddenLayers int `json:"n_layers"`
|
||||
RopeTheta int `json:"rope_theta"`
|
||||
NormEPS float64 `json:"norm_eps"`
|
||||
}
|
||||
|
||||
var tparams TorchParams
|
||||
|
||||
d := json.NewDecoder(f)
|
||||
err = d.Decode(&tparams)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
params := &Params{
|
||||
HiddenSize: tparams.HiddenSize,
|
||||
AttentionHeads: tparams.AttentionHeads,
|
||||
KeyValHeads: tparams.KeyValHeads,
|
||||
HiddenLayers: tparams.HiddenLayers,
|
||||
NormEPS: tparams.NormEPS,
|
||||
}
|
||||
|
||||
switch {
|
||||
case tparams.RopeTheta == 1000000:
|
||||
// Codellama
|
||||
params.ContextSize = 16384
|
||||
case tparams.NormEPS == 1e-06:
|
||||
// llama2
|
||||
slog.Debug("Found llama2 - setting context size to 4096")
|
||||
params.ContextSize = 4096
|
||||
default:
|
||||
params.ContextSize = 2048
|
||||
}
|
||||
|
||||
params.ByteOrder = binary.LittleEndian
|
||||
return params, nil
|
||||
}
|
||||
|
||||
func (m *TorchFormat) GetParams(dirpath string) (*Params, error) {
|
||||
f, err := os.Open(filepath.Join(dirpath, "config.json"))
|
||||
if err != nil {
|
||||
if os.IsNotExist(err) {
|
||||
// try params.json instead
|
||||
return getAltParams(dirpath)
|
||||
} else {
|
||||
return nil, err
|
||||
}
|
||||
}
|
||||
|
||||
var params Params
|
||||
d := json.NewDecoder(f)
|
||||
err = d.Decode(¶ms)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
params.ByteOrder = binary.LittleEndian
|
||||
return ¶ms, nil
|
||||
}
|
||||
|
||||
func (m *TorchFormat) GetLayerName(n string) (string, error) {
|
||||
directMap := map[string]string{
|
||||
"tok_embeddings.weight": "token_embd.weight",
|
||||
"output.weight": "output.weight",
|
||||
"norm.weight": "output_norm.weight",
|
||||
"rope.freqs": "rope_freqs.weight",
|
||||
"model.embed_tokens.weight": "token_embd.weight",
|
||||
"lm_head.weight": "output.weight",
|
||||
"model.norm.weight": "output_norm.weight",
|
||||
}
|
||||
|
||||
lMap := map[string]string{
|
||||
"layers.(\\d+).attention_norm.weight": "blk.$1.attn_norm.weight",
|
||||
"layers.(\\d+).attention_output_norm.weight": "blk.$1.attn_norm.weight",
|
||||
"layers.(\\d+).feed_forward.w2.weight": "blk.$1.ffn_down.weight",
|
||||
"layers.(\\d+).feed_forward.w1.weight": "blk.$1.ffn_gate.weight",
|
||||
"layers.(\\d+).feed_forward.w3.weight": "blk.$1.ffn_up.weight",
|
||||
"layers.(\\d+).ffn_norm.weight": "blk.$1.ffn_norm.weight",
|
||||
"layers.(\\d+).attention.wk.weight": "blk.$1.attn_k.weight",
|
||||
"layers.(\\d+).attention.wo.weight": "blk.$1.attn_output.weight",
|
||||
"layers.(\\d+).attention.wq.weight": "blk.$1.attn_q.weight",
|
||||
"layers.(\\d+).attention.wv.weight": "blk.$1.attn_v.weight",
|
||||
"model.layers.(\\d+).input_layernorm.weight": "blk.$1.attn_norm.weight",
|
||||
"model.layers.(\\d+).mlp.down_proj.weight": "blk.$1.ffn_down.weight",
|
||||
"model.layers.(\\d+).mlp.gate_proj.weight": "blk.$1.ffn_gate.weight",
|
||||
"model.layers.(\\d+).mlp.up_proj.weight": "blk.$1.ffn_up.weight",
|
||||
"model.layers.(\\d+).post_attention_layernorm.weight": "blk.$1.ffn_norm.weight",
|
||||
"model.layers.(\\d+).self_attn.k_proj.weight": "blk.$1.attn_k.weight",
|
||||
"model.layers.(\\d+).self_attn.o_proj.weight": "blk.$1.attn_output.weight",
|
||||
"model.layers.(\\d+).self_attn.q_proj.weight": "blk.$1.attn_q.weight",
|
||||
"model.layers.(\\d+).self_attn.v_proj.weight": "blk.$1.attn_v.weight",
|
||||
}
|
||||
|
||||
v, ok := directMap[n]
|
||||
if ok {
|
||||
return v, nil
|
||||
}
|
||||
|
||||
// quick hack to rename the layers to gguf format
|
||||
for k, v := range lMap {
|
||||
re := regexp.MustCompile(k)
|
||||
newName := re.ReplaceAllString(n, v)
|
||||
if newName != n {
|
||||
return newName, nil
|
||||
}
|
||||
}
|
||||
|
||||
return "", fmt.Errorf("couldn't find a layer name for '%s'", n)
|
||||
}
|
||||
|
||||
func (r torchWriterTo) WriteTo(w io.Writer) (n int64, err error) {
|
||||
// use the handler if one is present
|
||||
if r.handler != nil {
|
||||
return 0, r.handler(w, r)
|
||||
}
|
||||
|
||||
switch r.storage.(type) {
|
||||
case *pytorch.FloatStorage:
|
||||
slog.Warn(fmt.Sprintf("unexpected storage found for layer '%s'; skipping", r.t.Name))
|
||||
return 0, nil
|
||||
case *pytorch.HalfStorage:
|
||||
switch r.t.Kind {
|
||||
case 0:
|
||||
data := r.storage.(*pytorch.HalfStorage).Data
|
||||
slog.Debug(fmt.Sprintf("%35s F32 (%d)", r.t.Name, len(data)))
|
||||
if err := binary.Write(w, r.bo, data); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
case 1:
|
||||
data := r.storage.(*pytorch.HalfStorage).Data
|
||||
tData := make([]uint16, len(data))
|
||||
for cnt, v := range data {
|
||||
tData[cnt] = uint16(float16.Fromfloat32(v))
|
||||
}
|
||||
slog.Debug(fmt.Sprintf("%35s F16 (%d)", r.t.Name, len(tData)))
|
||||
if err := binary.Write(w, r.bo, tData); err != nil {
|
||||
return 0, err
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0, nil
|
||||
}
|
||||
|
||||
func (m *TorchFormat) GetModelArch(name, dirPath string, params *Params) (ModelArch, error) {
|
||||
switch len(params.Architectures) {
|
||||
case 0:
|
||||
return nil, fmt.Errorf("No architecture specified to convert")
|
||||
case 1:
|
||||
switch params.Architectures[0] {
|
||||
case "LlamaForCausalLM":
|
||||
return &LlamaModel{
|
||||
ModelData{
|
||||
Name: name,
|
||||
Path: dirPath,
|
||||
Params: params,
|
||||
Format: m,
|
||||
},
|
||||
}, nil
|
||||
default:
|
||||
return nil, fmt.Errorf("Models based on '%s' are not yet supported", params.Architectures[0])
|
||||
}
|
||||
}
|
||||
|
||||
return nil, fmt.Errorf("Unknown error")
|
||||
}
|
||||
Reference in New Issue
Block a user