mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-10 15:57:04 +00:00
Introduce /api/embed endpoint supporting batch embedding (#5127)
* Initial Batch Embedding * Revert "Initial Batch Embedding" This reverts commit c22d54895a280b54c727279d85a5fc94defb5a29. * Initial Draft * mock up notes * api/embed draft * add server function * check normalization * clean up * normalization * playing around with truncate stuff * Truncation * Truncation * move normalization to go * Integration Test Template * Truncation Integration Tests * Clean up * use float32 * move normalize * move normalize test * refactoring * integration float32 * input handling and handler testing * Refactoring of legacy and new * clear comments * merge conflicts * touches * embedding type 64 * merge conflicts * fix hanging on single string * refactoring * test values * set context length * clean up * testing clean up * testing clean up * remove function closure * Revert "remove function closure" This reverts commit 55d48c6ed17abe42e7a122e69d603ef0c1506787. * remove function closure * remove redundant error check * clean up * more clean up * clean up
This commit is contained in:
37
llm/ext_server/server.cpp
vendored
37
llm/ext_server/server.cpp
vendored
@@ -3188,26 +3188,33 @@ int main(int argc, char **argv) {
|
||||
prompt = "";
|
||||
}
|
||||
|
||||
json image_data;
|
||||
if (body.count("image_data") != 0) {
|
||||
image_data = body["image_data"];
|
||||
}
|
||||
else
|
||||
{
|
||||
image_data = "";
|
||||
if (prompt.size() == 1) {
|
||||
prompt = prompt[0];
|
||||
}
|
||||
|
||||
// create and queue the task
|
||||
const int task_id = llama.queue_tasks.get_new_id();
|
||||
llama.queue_results.add_waiting_task_id(task_id);
|
||||
llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, true, -1);
|
||||
json responses;
|
||||
{
|
||||
const int id_task = llama.queue_tasks.get_new_id();
|
||||
llama.queue_results.add_waiting_task_id(id_task);
|
||||
llama.request_completion(id_task, {{"prompt", prompt}}, true, -1);
|
||||
|
||||
// get the result
|
||||
task_result result = llama.queue_results.recv(task_id);
|
||||
llama.queue_results.remove_waiting_task_id(task_id);
|
||||
// get the result
|
||||
task_result result = llama.queue_results.recv(id_task);
|
||||
llama.queue_results.remove_waiting_task_id(id_task);
|
||||
if (result.error) {
|
||||
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
|
||||
}
|
||||
|
||||
// send the result
|
||||
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
|
||||
responses = result.result_json.value("results", std::vector<json>{result.result_json});
|
||||
json embeddings = json::array();
|
||||
for (auto & elem : responses) {
|
||||
embeddings.push_back(elem.at("embedding"));
|
||||
}
|
||||
// send the result
|
||||
json embedding_res = json{{"embedding", embeddings}};
|
||||
return res.set_content(embedding_res.dump(), "application/json; charset=utf-8");
|
||||
}
|
||||
});
|
||||
|
||||
// GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
|
||||
|
||||
@@ -33,7 +33,7 @@ type LlamaServer interface {
|
||||
Ping(ctx context.Context) error
|
||||
WaitUntilRunning(ctx context.Context) error
|
||||
Completion(ctx context.Context, req CompletionRequest, fn func(CompletionResponse)) error
|
||||
Embedding(ctx context.Context, prompt string) ([]float64, error)
|
||||
Embed(ctx context.Context, input []string) ([][]float32, error)
|
||||
Tokenize(ctx context.Context, content string) ([]int, error)
|
||||
Detokenize(ctx context.Context, tokens []int) (string, error)
|
||||
Close() error
|
||||
@@ -867,15 +867,15 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
return nil
|
||||
}
|
||||
|
||||
type EmbeddingRequest struct {
|
||||
Content string `json:"content"`
|
||||
type EmbedRequest struct {
|
||||
Content []string `json:"content"`
|
||||
}
|
||||
|
||||
type EmbeddingResponse struct {
|
||||
Embedding []float64 `json:"embedding"`
|
||||
type EmbedResponse struct {
|
||||
Embedding [][]float32 `json:"embedding"`
|
||||
}
|
||||
|
||||
func (s *llmServer) Embedding(ctx context.Context, prompt string) ([]float64, error) {
|
||||
func (s *llmServer) Embed(ctx context.Context, input []string) ([][]float32, error) {
|
||||
if err := s.sem.Acquire(ctx, 1); err != nil {
|
||||
slog.Error("Failed to acquire semaphore", "error", err)
|
||||
return nil, err
|
||||
@@ -890,7 +890,7 @@ func (s *llmServer) Embedding(ctx context.Context, prompt string) ([]float64, er
|
||||
return nil, fmt.Errorf("unexpected server status: %s", status.ToString())
|
||||
}
|
||||
|
||||
data, err := json.Marshal(TokenizeRequest{Content: prompt})
|
||||
data, err := json.Marshal(EmbedRequest{Content: input})
|
||||
if err != nil {
|
||||
return nil, fmt.Errorf("error marshaling embed data: %w", err)
|
||||
}
|
||||
@@ -917,7 +917,7 @@ func (s *llmServer) Embedding(ctx context.Context, prompt string) ([]float64, er
|
||||
return nil, fmt.Errorf("%s", body)
|
||||
}
|
||||
|
||||
var embedding EmbeddingResponse
|
||||
var embedding EmbedResponse
|
||||
if err := json.Unmarshal(body, &embedding); err != nil {
|
||||
return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user