mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-11 08:17:03 +00:00
ml/backend/ggml: update model loading for hybrid/multi backends
use a similar strategy as llama.cpp for deciding where tensors should be allocated. this will be improved later to be aware of usable memory before assigning the tensor
This commit is contained in:
@@ -9,67 +9,46 @@ package ggml
|
||||
import "C"
|
||||
|
||||
import (
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"iter"
|
||||
"log/slog"
|
||||
"maps"
|
||||
"os"
|
||||
"sync"
|
||||
"slices"
|
||||
"strconv"
|
||||
"strings"
|
||||
"unicode"
|
||||
"unsafe"
|
||||
|
||||
"github.com/ollama/ollama/format"
|
||||
fs "github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"golang.org/x/sync/errgroup"
|
||||
|
||||
ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
|
||||
)
|
||||
|
||||
type device struct {
|
||||
d *C.struct_ggml_backend_device
|
||||
}
|
||||
|
||||
func (d device) LogValue() slog.Value {
|
||||
var free, total uint64
|
||||
C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))
|
||||
|
||||
kind := "unknown"
|
||||
switch C.ggml_backend_dev_type(d.d) {
|
||||
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
|
||||
kind = "cpu"
|
||||
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
|
||||
kind = "gpu"
|
||||
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
||||
kind = "accel"
|
||||
func devices() iter.Seq[*C.struct_ggml_backend_device] {
|
||||
return func(yield func(*C.struct_ggml_backend_device) bool) {
|
||||
for i := range C.ggml_backend_dev_count() {
|
||||
if !yield(C.ggml_backend_dev_get(i)) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return slog.GroupValue(
|
||||
slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
|
||||
slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
|
||||
slog.String("kind", kind),
|
||||
slog.String("free", format.HumanBytes2(free)),
|
||||
slog.String("total", format.HumanBytes2(total)),
|
||||
)
|
||||
}
|
||||
|
||||
var devices = sync.OnceValue(func() []device {
|
||||
ggml.OnceLoad()
|
||||
|
||||
s := make([]device, C.ggml_backend_dev_count())
|
||||
for i := range s {
|
||||
s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
|
||||
}
|
||||
|
||||
return s
|
||||
})
|
||||
|
||||
type Backend struct {
|
||||
meta *fs.GGML
|
||||
|
||||
flashAttention bool
|
||||
|
||||
meta *fs.GGML
|
||||
cpus, gpus []Context
|
||||
tensors map[string]*Context
|
||||
|
||||
sched *C.struct_ggml_backend_sched
|
||||
|
||||
tensors map[string]*C.struct_ggml_tensor
|
||||
ctxs []*C.struct_ggml_context
|
||||
backends []*C.struct_ggml_backend
|
||||
bufts []*C.struct_ggml_backend_buffer_type
|
||||
}
|
||||
|
||||
func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
@@ -88,100 +67,226 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
|
||||
"num_key_values", len(meta.KV()),
|
||||
)
|
||||
|
||||
var cpus, gpus []Context
|
||||
for _, d := range devices() {
|
||||
switch C.ggml_backend_dev_type(d.d) {
|
||||
type dbt struct {
|
||||
d *C.struct_ggml_backend_device
|
||||
bts []*C.struct_ggml_backend_buffer_type
|
||||
}
|
||||
|
||||
var cpus, accels, gpus []*C.struct_ggml_backend_device
|
||||
for d := range devices() {
|
||||
switch C.ggml_backend_dev_type(d) {
|
||||
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
|
||||
cpus = append(cpus, d)
|
||||
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
||||
accels = append(accels, d)
|
||||
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
|
||||
gpus = append(gpus, d)
|
||||
}
|
||||
}
|
||||
|
||||
var cpuBufferTypes []*C.struct_ggml_backend_buffer_type
|
||||
for _, d := range append(accels, append(gpus, cpus...)...) {
|
||||
switch C.ggml_backend_dev_type(d) {
|
||||
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
|
||||
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
|
||||
slog.Info("cpu", "device", d)
|
||||
cpus = append(cpus, Context{
|
||||
ctx: C.ggml_init(C.struct_ggml_init_params{
|
||||
mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
|
||||
no_alloc: true,
|
||||
}),
|
||||
backend: C.ggml_backend_dev_init(d.d, nil),
|
||||
})
|
||||
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
|
||||
slog.Info("gpu", "device", d)
|
||||
gpus = append(gpus, Context{
|
||||
ctx: C.ggml_init(C.struct_ggml_init_params{
|
||||
mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
|
||||
no_alloc: true,
|
||||
}),
|
||||
backend: C.ggml_backend_dev_init(d.d, nil),
|
||||
})
|
||||
cpuBufferTypes = append(cpuBufferTypes, C.ggml_backend_dev_buffer_type(d))
|
||||
}
|
||||
}
|
||||
|
||||
ctxFunc := func(s []Context) (*Context, error) {
|
||||
for _, e := range s {
|
||||
return &e, nil
|
||||
}
|
||||
var sum uint64
|
||||
var cumsum []uint64
|
||||
|
||||
return nil, fmt.Errorf("no devices available")
|
||||
var gpuBufferTypes []dbt
|
||||
for _, d := range gpus {
|
||||
var free, total C.size_t
|
||||
C.ggml_backend_dev_memory(d, &free, &total)
|
||||
sum += uint64(free)
|
||||
cumsum = append(cumsum, sum)
|
||||
|
||||
bt := C.ggml_backend_dev_buffer_type(d)
|
||||
gpuBufferTypes = append(gpuBufferTypes, dbt{
|
||||
d: d,
|
||||
bts: append([]*C.struct_ggml_backend_buffer_type{bt}, cpuBufferTypes...),
|
||||
})
|
||||
}
|
||||
|
||||
tensors := make(map[*fs.Tensor]*Context, len(meta.Tensors().Items()))
|
||||
for _, t := range meta.Tensors().Items() {
|
||||
c, err := ctxFunc(append(gpus, cpus...))
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
splits := make([]float64, len(cumsum))
|
||||
for i := range splits {
|
||||
splits[i] = float64(cumsum[i]) / float64(sum)
|
||||
}
|
||||
|
||||
func() {
|
||||
tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
|
||||
input := dbt{C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU), cpuBufferTypes}
|
||||
slog.Info("input layer", "device", C.GoString(C.ggml_backend_dev_name(input.d)))
|
||||
|
||||
var blocks int
|
||||
for key, value := range meta.KV() {
|
||||
if strings.HasSuffix(key, ".block_count") {
|
||||
blocks += int(value.(uint32))
|
||||
}
|
||||
}
|
||||
|
||||
indexFunc := func(i int) func(float64) bool {
|
||||
return func(f float64) bool {
|
||||
return float64(i)/float64(blocks+1) < f
|
||||
}
|
||||
}
|
||||
|
||||
layers := make([]dbt, blocks)
|
||||
for i := range layers {
|
||||
layers[i] = gpuBufferTypes[slices.IndexFunc(splits, indexFunc(i))]
|
||||
slog.Info("layer", "i", i, "device", C.GoString(C.ggml_backend_dev_name(layers[i].d)))
|
||||
}
|
||||
|
||||
output := gpuBufferTypes[slices.IndexFunc(splits, indexFunc(blocks))]
|
||||
slog.Info("output layer", "device", C.GoString(C.ggml_backend_dev_name(output.d)))
|
||||
|
||||
maxTensors := len(meta.Tensors().Items())
|
||||
maxTensors += 1
|
||||
maxTensors += blocks * 2
|
||||
|
||||
slog.Info("max tensors", "max_tensors", maxTensors)
|
||||
|
||||
ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
|
||||
createTensor := func(t *fs.Tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor {
|
||||
for _, bt := range bts {
|
||||
if _, ok := ctxs[bt]; !ok {
|
||||
ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
|
||||
mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
|
||||
no_alloc: true,
|
||||
})
|
||||
}
|
||||
|
||||
cname := C.CString(t.Name)
|
||||
defer C.free(unsafe.Pointer(cname))
|
||||
if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
|
||||
return tt
|
||||
}
|
||||
|
||||
tt := C.ggml_new_tensor(ctxs[bt], t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
|
||||
C.ggml_set_name(tt, cname)
|
||||
|
||||
tensors[t] = c
|
||||
}()
|
||||
slog.Debug("created tensor", "name", t.Name, "shape", t.Shape, "dtype", t.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
|
||||
//nolint:staticcheck // TODO: check if buffer type supports this tensor
|
||||
return tt
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
for _, b := range append(gpus, cpus...) {
|
||||
C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
|
||||
hasPart := func(s string, parts ...string) bool {
|
||||
split := strings.Split(s, ".")
|
||||
for _, part := range parts {
|
||||
if slices.Contains(split, part) {
|
||||
return true
|
||||
}
|
||||
}
|
||||
|
||||
return false
|
||||
}
|
||||
|
||||
for _, t := range meta.Tensors().Items() {
|
||||
switch {
|
||||
case hasPart(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
|
||||
createTensor(t, input.bts)
|
||||
case hasPart(t.Name, "cls", "output", "output_norm"):
|
||||
createTensor(t, output.bts)
|
||||
default:
|
||||
if i := func() int {
|
||||
if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
|
||||
if i, err := strconv.Atoi(fields[0]); err == nil {
|
||||
return i
|
||||
}
|
||||
}
|
||||
|
||||
return -1
|
||||
}(); i >= 0 {
|
||||
createTensor(t, layers[i].bts)
|
||||
} else {
|
||||
for _, layer := range layers {
|
||||
createTensor(t, layer.bts)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bbs := make(map[*C.struct_ggml_context][]*C.struct_ggml_backend_buffer, len(ctxs))
|
||||
|
||||
for bt, c := range ctxs {
|
||||
if C.ggml_get_first_tensor(c) == nil {
|
||||
continue
|
||||
}
|
||||
|
||||
b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
|
||||
C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
|
||||
bbs[c] = append(bbs[c], b)
|
||||
}
|
||||
|
||||
for bs := range maps.Values(bbs) {
|
||||
for _, b := range bs {
|
||||
slog.Info("model", "buffer", C.GoString(C.ggml_backend_buffer_name(b)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(b))))
|
||||
}
|
||||
}
|
||||
|
||||
tensors := make(map[string]*C.struct_ggml_tensor)
|
||||
for _, c := range ctxs {
|
||||
for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
|
||||
tensors[C.GoString(C.ggml_get_name(t))] = t
|
||||
}
|
||||
}
|
||||
|
||||
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
|
||||
|
||||
var g errgroup.Group
|
||||
for t, c := range tensors {
|
||||
for _, t := range meta.Tensors().Items() {
|
||||
g.Go(func() error {
|
||||
tt, ok := tensors[t.Name]
|
||||
if !ok {
|
||||
return fmt.Errorf("unassigned tensor: %s", t.Name)
|
||||
}
|
||||
|
||||
bts := make([]byte, t.Size())
|
||||
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
if n != int(t.Size()) {
|
||||
return fmt.Errorf("expected %d bytes, got %d", t.Size(), n)
|
||||
if n != len(bts) {
|
||||
return errors.New("short read")
|
||||
}
|
||||
|
||||
cname := C.CString(t.Name)
|
||||
defer C.free(unsafe.Pointer(cname))
|
||||
C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
|
||||
C.free(unsafe.Pointer(cname))
|
||||
|
||||
C.ggml_backend_tensor_set(C.ggml_get_tensor(c.ctx, cname), unsafe.Pointer(&bts[0]), 0, C.size_t(n))
|
||||
return nil
|
||||
})
|
||||
}
|
||||
|
||||
if err := g.Wait(); err != nil {
|
||||
if g.Wait() != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
backends := make([]*C.struct_ggml_backend, len(gpus)+len(cpus))
|
||||
bufts := make([]*C.struct_ggml_backend_buffer_type, len(gpus)+len(cpus))
|
||||
for i, c := range append(gpus, cpus...) {
|
||||
backends[i] = c.backend
|
||||
bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
|
||||
var backends []*C.struct_ggml_backend
|
||||
var bufts []*C.struct_ggml_backend_buffer_type
|
||||
for _, d := range append(gpus, append(accels, cpus...)...) {
|
||||
b := C.ggml_backend_dev_init(d, nil)
|
||||
backends = append(backends, b)
|
||||
|
||||
bt := C.ggml_backend_get_default_buffer_type(b)
|
||||
if d := C.ggml_backend_get_device(b); C.ggml_backend_dev_type(d) == C.GGML_BACKEND_DEVICE_TYPE_CPU && len(gpus) > 0 {
|
||||
if hbt := C.ggml_backend_dev_host_buffer_type(d); hbt != nil {
|
||||
bt = hbt
|
||||
}
|
||||
}
|
||||
|
||||
bufts = append(bufts, bt)
|
||||
|
||||
slog.Info("compute buffer", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
|
||||
}
|
||||
|
||||
return &Backend{
|
||||
flashAttention: params.FlashAttention,
|
||||
meta: meta,
|
||||
cpus: cpus,
|
||||
gpus: gpus,
|
||||
meta: meta,
|
||||
tensors: tensors,
|
||||
sched: C.ggml_backend_sched_new(
|
||||
(*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
|
||||
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
|
||||
@@ -201,36 +306,22 @@ func (b *Backend) Config() ml.Config {
|
||||
}
|
||||
|
||||
func (b *Backend) Get(name string) ml.Tensor {
|
||||
cname := C.CString(name)
|
||||
defer C.free(unsafe.Pointer(cname))
|
||||
|
||||
for _, c := range append(b.gpus, b.cpus...) {
|
||||
if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
|
||||
return &Tensor{b: b, t: t}
|
||||
}
|
||||
if t, ok := b.tensors[name]; ok {
|
||||
return &Tensor{b: b, t: t}
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
||||
func (b *Backend) NewContext() ml.Context {
|
||||
nodes := max(8192, len(b.meta.Tensors().Items())*5)
|
||||
c := C.ggml_init(C.struct_ggml_init_params{
|
||||
mem_buffer: nil,
|
||||
mem_size: C.size_t(nodes)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(nodes), false),
|
||||
no_alloc: true,
|
||||
})
|
||||
|
||||
backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
|
||||
for i, c := range append(b.gpus, b.cpus...) {
|
||||
backends[i] = c.backend
|
||||
}
|
||||
|
||||
maxTensors := max(8192, len(b.meta.Tensors().Items())*5)
|
||||
return &Context{
|
||||
b: b,
|
||||
ctx: c,
|
||||
backend: backends[0],
|
||||
nodes: nodes,
|
||||
b: b,
|
||||
maxTensors: maxTensors,
|
||||
ctx: C.ggml_init(C.struct_ggml_init_params{
|
||||
mem_size: C.size_t(maxTensors)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(maxTensors), false),
|
||||
no_alloc: true,
|
||||
}),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -243,17 +334,17 @@ func (b *Backend) CacheConfig() ml.CacheConfig {
|
||||
}
|
||||
|
||||
type Context struct {
|
||||
b *Backend
|
||||
ctx *C.struct_ggml_context
|
||||
backend *C.struct_ggml_backend
|
||||
b *Backend
|
||||
|
||||
ctx *C.struct_ggml_context
|
||||
graph *C.struct_ggml_cgraph
|
||||
nodes int
|
||||
|
||||
maxTensors int
|
||||
}
|
||||
|
||||
func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
|
||||
if c.graph == nil {
|
||||
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
|
||||
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxTensors), false)
|
||||
}
|
||||
|
||||
for _, tensor := range tensors {
|
||||
@@ -264,8 +355,9 @@ func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
|
||||
}
|
||||
|
||||
func (c *Context) Compute(tensors ...ml.Tensor) {
|
||||
C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph)
|
||||
C.ggml_backend_sched_reset(c.b.sched)
|
||||
C.ggml_backend_sched_alloc_graph(c.b.sched, c.graph)
|
||||
C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph)
|
||||
|
||||
needSync := true
|
||||
sync := func() {
|
||||
@@ -283,19 +375,19 @@ func (c *Context) Compute(tensors ...ml.Tensor) {
|
||||
}
|
||||
|
||||
func (c *Context) MaxTensors() int {
|
||||
return c.nodes
|
||||
return c.maxTensors
|
||||
}
|
||||
|
||||
func shapeToGGML(shape []int) *C.int64_t {
|
||||
sh := make([]C.int64_t, len(shape))
|
||||
for i, s := range shape {
|
||||
sh[i] = (C.int64_t)(s)
|
||||
sh[i] = C.int64_t(s)
|
||||
}
|
||||
|
||||
return &sh[0]
|
||||
}
|
||||
|
||||
func newTensor(ctx Context, dtype ml.DType, zero bool, shape []int) ml.Tensor {
|
||||
func newTensor(ctx Context, dtype ml.DType, shape []int) ml.Tensor {
|
||||
if len(shape) < 1 || len(shape) > 4 {
|
||||
panic("unsupported number of dimensions")
|
||||
}
|
||||
@@ -318,20 +410,20 @@ func newTensor(ctx Context, dtype ml.DType, zero bool, shape []int) ml.Tensor {
|
||||
panic("unsupported dtype")
|
||||
}
|
||||
|
||||
b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
|
||||
b := C.ggml_backend_alloc_buffer(C.ggml_backend_sched_get_backend(ctx.b.sched, 0), C.ggml_nbytes(t))
|
||||
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
|
||||
if zero {
|
||||
C.ggml_set_zero(t)
|
||||
}
|
||||
C.ggml_set_input(t)
|
||||
return &Tensor{b: ctx.b, t: t}
|
||||
}
|
||||
|
||||
func (c Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
return newTensor(c, dtype, false, shape)
|
||||
return newTensor(c, dtype, shape)
|
||||
}
|
||||
|
||||
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
||||
return newTensor(c, dtype, true, shape)
|
||||
t := newTensor(c, dtype, shape)
|
||||
C.ggml_set_zero(t.(*Tensor).t)
|
||||
return t
|
||||
}
|
||||
|
||||
func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
|
||||
@@ -352,9 +444,10 @@ func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype u
|
||||
}
|
||||
|
||||
t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), shapeToGGML(shape))
|
||||
b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
|
||||
b := C.ggml_backend_alloc_buffer(C.ggml_backend_sched_get_backend(ctx.b.sched, 0), C.ggml_nbytes(t))
|
||||
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
|
||||
C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
|
||||
C.ggml_set_input(t)
|
||||
return &Tensor{b: ctx.b, t: t}, nil
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user