Merge branch 'ollama:main' into mannix-server

This commit is contained in:
ManniX-ITA
2024-04-18 18:45:15 +02:00
committed by GitHub
12 changed files with 148 additions and 204 deletions

View File

@@ -164,7 +164,8 @@ func (ts Tensors) Layers() map[string]Layer {
for _, t := range ts {
parts := strings.Split(t.Name, ".")
if parts[0] == "blk" {
parts = parts[1:]
// join first and second part, e.g. blk.%d
parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
}
if _, ok := layers[parts[0]]; !ok {
@@ -380,6 +381,12 @@ func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload ui
)
partialOffload = 4*batch*(2*embedding+vocab) + embedding*vocab*105/128
case "stablelm":
fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
partialOffload = max(
4*batch*(vocab+2*embedding),
fullOffload,
)
}
return

View File

@@ -248,13 +248,17 @@ func (llm *gguf) Decode(rs io.ReadSeeker) error {
}
padding := llm.padding(offset, int64(alignment))
if _, err := rs.Seek(padding-offset, io.SeekCurrent); err != nil {
if _, err := rs.Seek(padding, io.SeekCurrent); err != nil {
return err
}
for _, tensor := range llm.tensors {
padded := (int64(tensor.size()) + int64(alignment) - 1) & ^(int64(alignment) - 1)
if _, err := rs.Seek(padded, io.SeekCurrent); err != nil {
if _, err := rs.Seek(int64(tensor.size()), io.SeekCurrent); err != nil {
return err
}
padding := llm.padding(int64(tensor.size()), int64(alignment))
if _, err := rs.Seek(padding, io.SeekCurrent); err != nil {
return err
}
}
@@ -623,8 +627,9 @@ func (llm *gguf) Encode(ws io.WriteSeeker, kv KV, tensors []Tensor) error {
return err
}
padding := llm.padding(offset, 32)
if err := binary.Write(ws, llm.ByteOrder, bytes.Repeat([]byte{0}, int(padding-offset))); err != nil {
var alignment int64 = 32
padding := llm.padding(offset, alignment)
if err := binary.Write(ws, llm.ByteOrder, bytes.Repeat([]byte{0}, int(padding))); err != nil {
return err
}
@@ -638,8 +643,8 @@ func (llm *gguf) Encode(ws io.WriteSeeker, kv KV, tensors []Tensor) error {
return err
}
padding := llm.padding(offset, 32)
if err := binary.Write(ws, llm.ByteOrder, bytes.Repeat([]byte{0}, int(padding-offset))); err != nil {
padding := llm.padding(offset, alignment)
if err := binary.Write(ws, llm.ByteOrder, bytes.Repeat([]byte{0}, int(padding))); err != nil {
return err
}
}
@@ -648,5 +653,5 @@ func (llm *gguf) Encode(ws io.WriteSeeker, kv KV, tensors []Tensor) error {
}
func (gguf) padding(offset, align int64) int64 {
return (offset + align - 1) / align * align
return (align - offset%align) % align
}

View File

@@ -97,7 +97,7 @@ func NewLlamaServer(model string, adapters, projectors []string, opts api.Option
var layerCount int
layers := ggml.Tensors().Layers()
for i := 0; i < int(ggml.KV().BlockCount()); i++ {
memoryLayer := layers[fmt.Sprintf("%d", i)].size()
memoryLayer := layers[fmt.Sprintf("blk.%d", i)].size()
// KV is proportional to the number of layers
memoryLayer += kv / ggml.KV().BlockCount()
@@ -109,7 +109,13 @@ func NewLlamaServer(model string, adapters, projectors []string, opts api.Option
}
}
memoryLayerOutput := layers["output"].size()
var memoryLayerOutput uint64
for k, v := range layers {
if !strings.HasPrefix(k, "blk.") {
memoryLayerOutput += v.size()
}
}
memoryRequiredTotal += memoryLayerOutput
if info.Library == "metal" && memoryRequiredTotal > info.TotalMemory {
@@ -124,16 +130,47 @@ func NewLlamaServer(model string, adapters, projectors []string, opts api.Option
opts.NumGPU = layerCount
}
memoryWeights := memoryRequiredTotal - memoryMinimum - graphFullOffload - kv
slog.Info(
"offload to gpu",
"reallayers", opts.NumGPU,
"layers", layerCount,
"required", format.HumanBytes2(memoryRequiredTotal),
"used", format.HumanBytes2(memoryRequiredPartial),
"available", format.HumanBytes2(memoryAvailable),
"kv", format.HumanBytes2(kv),
"fulloffload", format.HumanBytes2(graphFullOffload),
"partialoffload", format.HumanBytes2(graphPartialOffload),
slog.Group(
"layers",
// actual number of layers offloaded
"real", opts.NumGPU,
// estimated number of layers that can be offloaded
"estimate", layerCount,
),
slog.Group(
"memory",
// memory available for offloading
"available", format.HumanBytes2(memoryAvailable),
slog.Group(
"required",
// memory required for full offloading
"full", format.HumanBytes2(memoryRequiredTotal),
// memory required to offload layers.estimate layers
"partial", format.HumanBytes2(memoryRequiredPartial),
// memory of KV cache
"kv", format.HumanBytes2(kv),
),
slog.Group(
"weights",
// memory of the weights
"total", format.HumanBytes2(memoryWeights),
// memory of repeating layers
"repeating", format.HumanBytes2(memoryWeights-memoryLayerOutput),
// memory of non-repeating layers
"nonrepeating", format.HumanBytes2(memoryLayerOutput),
),
slog.Group(
"graph",
// memory of graph when fully offloaded
"full", format.HumanBytes2(graphFullOffload),
// memory of graph when not fully offloaded
"partial", format.HumanBytes2(graphPartialOffload),
),
),
)
if len(adapters) > 1 {