mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-10 15:57:04 +00:00
Update 'llama2' -> 'llama3' in most places (#4116)
* Update 'llama2' -> 'llama3' in most places --------- Co-authored-by: Patrick Devine <patrick@infrahq.com>
This commit is contained in:
@@ -2,7 +2,7 @@
|
||||
|
||||
When calling `ollama`, you can pass it a file to run all the prompts in the file, one after the other:
|
||||
|
||||
`ollama run llama2 < sourcequestions.txt`
|
||||
`ollama run llama3 < sourcequestions.txt`
|
||||
|
||||
This concept is used in the following example.
|
||||
|
||||
|
||||
@@ -35,7 +35,7 @@ func main() {
|
||||
|
||||
ctx := context.Background()
|
||||
req := &api.ChatRequest{
|
||||
Model: "llama2",
|
||||
Model: "llama3",
|
||||
Messages: messages,
|
||||
}
|
||||
|
||||
|
||||
@@ -40,9 +40,9 @@ while True:
|
||||
continue
|
||||
|
||||
# Prompt
|
||||
template = """Use the following pieces of context to answer the question at the end.
|
||||
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
||||
Use three sentences maximum and keep the answer as concise as possible.
|
||||
template = """Use the following pieces of context to answer the question at the end.
|
||||
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
||||
Use three sentences maximum and keep the answer as concise as possible.
|
||||
{context}
|
||||
Question: {question}
|
||||
Helpful Answer:"""
|
||||
@@ -51,11 +51,11 @@ while True:
|
||||
template=template,
|
||||
)
|
||||
|
||||
llm = Ollama(model="llama2:13b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
|
||||
llm = Ollama(model="llama3:8b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
|
||||
qa_chain = RetrievalQA.from_chain_type(
|
||||
llm,
|
||||
retriever=vectorstore.as_retriever(),
|
||||
chain_type_kwargs={"prompt": QA_CHAIN_PROMPT},
|
||||
)
|
||||
|
||||
result = qa_chain({"query": query})
|
||||
result = qa_chain({"query": query})
|
||||
|
||||
@@ -4,10 +4,10 @@ This example is a basic "hello world" of using LangChain with Ollama.
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `llama2` model installed:
|
||||
1. Ensure you have the `llama3` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull llama2
|
||||
ollama pull llama3
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
@@ -21,4 +21,3 @@ This example is a basic "hello world" of using LangChain with Ollama.
|
||||
```bash
|
||||
python main.py
|
||||
```
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
from langchain.llms import Ollama
|
||||
|
||||
input = input("What is your question?")
|
||||
llm = Ollama(model="llama2")
|
||||
llm = Ollama(model="llama3")
|
||||
res = llm.predict(input)
|
||||
print (res)
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
FROM llama2
|
||||
FROM llama3
|
||||
PARAMETER temperature 1
|
||||
SYSTEM """
|
||||
You are Mario from super mario bros, acting as an assistant.
|
||||
|
||||
@@ -2,12 +2,12 @@
|
||||
|
||||
# Example character: Mario
|
||||
|
||||
This example shows how to create a basic character using Llama2 as the base model.
|
||||
This example shows how to create a basic character using Llama3 as the base model.
|
||||
|
||||
To run this example:
|
||||
|
||||
1. Download the Modelfile
|
||||
2. `ollama pull llama2` to get the base model used in the model file.
|
||||
2. `ollama pull llama3` to get the base model used in the model file.
|
||||
3. `ollama create NAME -f ./Modelfile`
|
||||
4. `ollama run NAME`
|
||||
|
||||
@@ -18,7 +18,7 @@ Ask it some questions like "Who are you?" or "Is Peach in trouble again?"
|
||||
What the model file looks like:
|
||||
|
||||
```
|
||||
FROM llama2
|
||||
FROM llama3
|
||||
PARAMETER temperature 1
|
||||
SYSTEM """
|
||||
You are Mario from Super Mario Bros, acting as an assistant.
|
||||
|
||||
@@ -2,16 +2,16 @@ import requests
|
||||
import json
|
||||
import random
|
||||
|
||||
model = "llama2"
|
||||
model = "llama3"
|
||||
template = {
|
||||
"firstName": "",
|
||||
"lastName": "",
|
||||
"firstName": "",
|
||||
"lastName": "",
|
||||
"address": {
|
||||
"street": "",
|
||||
"city": "",
|
||||
"state": "",
|
||||
"street": "",
|
||||
"city": "",
|
||||
"state": "",
|
||||
"zipCode": ""
|
||||
},
|
||||
},
|
||||
"phoneNumber": ""
|
||||
}
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@ countries = [
|
||||
"France",
|
||||
]
|
||||
country = random.choice(countries)
|
||||
model = "llama2"
|
||||
model = "llama3"
|
||||
|
||||
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters."
|
||||
|
||||
|
||||
@@ -6,10 +6,10 @@ There are two python scripts in this example. `randomaddresses.py` generates ran
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `llama2` model installed:
|
||||
1. Ensure you have the `llama3` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull llama2
|
||||
ollama pull llama3
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
||||
@@ -2,7 +2,7 @@ import json
|
||||
import requests
|
||||
|
||||
# NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
|
||||
model = "llama2" # TODO: update this for whatever model you wish to use
|
||||
model = "llama3" # TODO: update this for whatever model you wish to use
|
||||
|
||||
|
||||
def chat(messages):
|
||||
|
||||
@@ -4,10 +4,10 @@ The **chat** endpoint is one of two ways to generate text from an LLM with Ollam
|
||||
|
||||
## Running the Example
|
||||
|
||||
1. Ensure you have the `llama2` model installed:
|
||||
1. Ensure you have the `llama3` model installed:
|
||||
|
||||
```bash
|
||||
ollama pull llama2
|
||||
ollama pull llama3
|
||||
```
|
||||
|
||||
2. Install the Python Requirements.
|
||||
|
||||
@@ -4,10 +4,10 @@ This example demonstrates how one would create a set of 'mentors' you can have a
|
||||
|
||||
## Usage
|
||||
|
||||
1. Add llama2 to have the mentors ask your questions:
|
||||
1. Add llama3 to have the mentors ask your questions:
|
||||
|
||||
```bash
|
||||
ollama pull llama2
|
||||
ollama pull llama3
|
||||
```
|
||||
|
||||
2. Install prerequisites:
|
||||
|
||||
@@ -15,7 +15,7 @@ async function characterGenerator() {
|
||||
ollama.setModel("stablebeluga2:70b-q4_K_M");
|
||||
const bio = await ollama.generate(`create a bio of ${character} in a single long paragraph. Instead of saying '${character} is...' or '${character} was...' use language like 'You are...' or 'You were...'. Then create a paragraph describing the speaking mannerisms and style of ${character}. Don't include anything about how ${character} looked or what they sounded like, just focus on the words they said. Instead of saying '${character} would say...' use language like 'You should say...'. If you use quotes, always use single quotes instead of double quotes. If there are any specific words or phrases you used a lot, show how you used them. `);
|
||||
|
||||
const thecontents = `FROM llama2\nSYSTEM """\n${bio.response.replace(/(\r\n|\n|\r)/gm, " ").replace('would', 'should')} All answers to questions should be related back to what you are most known for.\n"""`;
|
||||
const thecontents = `FROM llama3\nSYSTEM """\n${bio.response.replace(/(\r\n|\n|\r)/gm, " ").replace('would', 'should')} All answers to questions should be related back to what you are most known for.\n"""`;
|
||||
|
||||
fs.writeFile(path.join(directory, 'Modelfile'), thecontents, (err: any) => {
|
||||
if (err) throw err;
|
||||
@@ -23,4 +23,4 @@ async function characterGenerator() {
|
||||
});
|
||||
}
|
||||
|
||||
characterGenerator();
|
||||
characterGenerator();
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import * as readline from "readline";
|
||||
|
||||
const model = "llama2";
|
||||
const model = "llama3";
|
||||
type Message = {
|
||||
role: "assistant" | "user" | "system";
|
||||
content: string;
|
||||
@@ -74,4 +74,4 @@ async function main() {
|
||||
|
||||
}
|
||||
|
||||
main();
|
||||
main();
|
||||
|
||||
Reference in New Issue
Block a user