Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support

This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Shang Chieh Tseng
2025-11-05 14:03:05 +08:00
parent fabe2c5cb7
commit ef14fb5b26
817 changed files with 241634 additions and 70888 deletions

View File

@@ -0,0 +1,153 @@
---
title: Thinking
---
Thinking-capable models emit a `thinking` field that separates their reasoning trace from the final answer.
Use this capability to audit model steps, animate the model *thinking* in a UI, or hide the trace entirely when you only need the final response.
## Supported models
- [Qwen 3](https://ollama.com/library/qwen3)
- [GPT-OSS](https://ollama.com/library/gpt-oss) *(use `think` levels: `low`, `medium`, `high` — the trace cannot be fully disabled)*
- [DeepSeek-v3.1](https://ollama.com/library/deepseek-v3.1)
- [DeepSeek R1](https://ollama.com/library/deepseek-r1)
- Browse the latest additions under [thinking models](https://ollama.com/search?c=thinking)
## Enable thinking in API calls
Set the `think` field on chat or generate requests. Most models accept booleans (`true`/`false`).
GPT-OSS instead expects one of `low`, `medium`, or `high` to tune the trace length.
The `message.thinking` (chat endpoint) or `thinking` (generate endpoint) field contains the reasoning trace while `message.content` / `response` holds the final answer.
<Tabs>
<Tab title="cURL">
```shell
curl http://localhost:11434/api/chat -d '{
"model": "qwen3",
"messages": [{
"role": "user",
"content": "How many letter r are in strawberry?"
}],
"think": true,
"stream": false
}'
```
</Tab>
<Tab title="Python">
```python
from ollama import chat
response = chat(
model='qwen3',
messages=[{'role': 'user', 'content': 'How many letter r are in strawberry?'}],
think=True,
stream=False,
)
print('Thinking:\n', response.message.thinking)
print('Answer:\n', response.message.content)
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
const response = await ollama.chat({
model: 'deepseek-r1',
messages: [{ role: 'user', content: 'How many letter r are in strawberry?' }],
think: true,
stream: false,
})
console.log('Thinking:\n', response.message.thinking)
console.log('Answer:\n', response.message.content)
```
</Tab>
</Tabs>
<Note>
GPT-OSS requires `think` to be set to `"low"`, `"medium"`, or `"high"`. Passing `true`/`false` is ignored for that model.
</Note>
## Stream the reasoning trace
Thinking streams interleave reasoning tokens before answer tokens. Detect the first `thinking` chunk to render a "thinking" section, then switch to the final reply once `message.content` arrives.
<Tabs>
<Tab title="Python">
```python
from ollama import chat
stream = chat(
model='qwen3',
messages=[{'role': 'user', 'content': 'What is 17 × 23?'}],
think=True,
stream=True,
)
in_thinking = False
for chunk in stream:
if chunk.message.thinking and not in_thinking:
in_thinking = True
print('Thinking:\n', end='')
if chunk.message.thinking:
print(chunk.message.thinking, end='')
elif chunk.message.content:
if in_thinking:
print('\n\nAnswer:\n', end='')
in_thinking = False
print(chunk.message.content, end='')
```
</Tab>
<Tab title="JavaScript">
```javascript
import ollama from 'ollama'
async function main() {
const stream = await ollama.chat({
model: 'qwen3',
messages: [{ role: 'user', content: 'What is 17 × 23?' }],
think: true,
stream: true,
})
let inThinking = false
for await (const chunk of stream) {
if (chunk.message.thinking && !inThinking) {
inThinking = true
process.stdout.write('Thinking:\n')
}
if (chunk.message.thinking) {
process.stdout.write(chunk.message.thinking)
} else if (chunk.message.content) {
if (inThinking) {
process.stdout.write('\n\nAnswer:\n')
inThinking = false
}
process.stdout.write(chunk.message.content)
}
}
}
main()
```
</Tab>
</Tabs>
## CLI quick reference
- Enable thinking for a single run: `ollama run deepseek-r1 --think "Where should I visit in Lisbon?"`
- Disable thinking: `ollama run deepseek-r1 --think=false "Summarize this article"`
- Hide the trace while still using a thinking model: `ollama run deepseek-r1 --hidethinking "Is 9.9 bigger or 9.11?"`
- Inside interactive sessions, toggle with `/set think` or `/set nothink`.
- GPT-OSS only accepts levels: `ollama run gpt-oss --think=low "Draft a headline"` (replace `low` with `medium` or `high` as needed).
<Note>Thinking is enabled by default in the CLI and API for supported models.</Note>