Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support

This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Shang Chieh Tseng
2025-11-05 14:03:05 +08:00
parent fabe2c5cb7
commit ef14fb5b26
817 changed files with 241634 additions and 70888 deletions

View File

@@ -509,7 +509,10 @@ func writeGGUFArray[S ~[]E, E any](w io.Writer, t uint32, s S) error {
}
func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
alignment := kv.Uint("general.alignment", 32)
arch := kv.String("general.architecture")
if arch == "" {
return fmt.Errorf("architecture not set")
}
if err := binary.Write(f, binary.LittleEndian, []byte("GGUF")); err != nil {
return err
@@ -528,17 +531,22 @@ func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
}
for _, key := range slices.Sorted(maps.Keys(kv)) {
if err := ggufWriteKV(f, key, kv[key]); err != nil {
if err := ggufWriteKV(f, arch, key, kv[key]); err != nil {
return err
}
}
slices.SortStableFunc(ts, func(a, b *Tensor) int {
if i, j := a.block(), b.block(); i > 0 && j > 0 {
return cmp.Compare(i, j)
}
return cmp.Compare(a.Name, b.Name)
})
slices.SortStableFunc(
ts,
func(a, b *Tensor) int {
return cmp.Or(
cmp.Compare(a.block(), b.block()),
cmp.Compare(a.Name, b.Name),
)
},
)
alignment := kv.Uint("general.alignment", 32)
var s uint64
for i := range ts {
@@ -571,7 +579,14 @@ func WriteGGUF(f *os.File, kv KV, ts []*Tensor) error {
return g.Wait()
}
func ggufWriteKV(ws io.WriteSeeker, k string, v any) error {
func ggufWriteKV(ws io.WriteSeeker, arch, k string, v any) error {
if !strings.HasPrefix(k, arch+".") &&
!strings.HasPrefix(k, "general.") &&
!strings.HasPrefix(k, "adapter.") &&
!strings.HasPrefix(k, "tokenizer.") {
k = arch + "." + k
}
slog.Debug(k, "type", fmt.Sprintf("%T", v))
if err := binary.Write(ws, binary.LittleEndian, uint64(len(k))); err != nil {
return err