mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-18 03:37:09 +00:00
Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from official ollama/ollama repository and re-applying Tesla K80 compatibility patches. ## Key Changes ### CUDA Compute Capability 3.7 Support (Tesla K80) - Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt - Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset - Using 37-virtual (PTX with JIT compilation) for maximum compatibility ### Legacy Toolchain Compatibility - **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80) - **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7) - **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h) ### CPU Architecture Trade-offs Due to GCC 10.5 limitation, sacrificed newer CPU optimizations: - Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+) - Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA - Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility) ### Build System Updates - Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7 - Added -Wno-deprecated-gpu-targets flag to suppress warnings - Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI ### Upstream Sync Merged latest llama.cpp changes including: - Enhanced KV cache management with ISWA and hybrid memory support - Improved multi-modal support (mtmd framework) - New model architectures (Gemma3, Llama4, Qwen3, etc.) - GPU backend improvements for CUDA, Metal, and ROCm - Updated quantization support and GGUF format handling ### Documentation - Updated CLAUDE.md with comprehensive build instructions - Documented toolchain constraints and CPU architecture trade-offs - Removed outdated CI/CD workflows (tesla-k80-*.yml) - Cleaned up temporary development artifacts ## Rationale This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in official Ollama due to legacy driver/CUDA requirements. The toolchain constraint creates a deadlock: - K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI We accept the loss of cutting-edge CPU optimizations to enable running modern LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -9,7 +9,6 @@ import (
|
||||
"time"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/stretchr/testify/require"
|
||||
)
|
||||
|
||||
func TestVisionModels(t *testing.T) {
|
||||
@@ -27,23 +26,37 @@ func TestVisionModels(t *testing.T) {
|
||||
{
|
||||
model: "gemma3",
|
||||
},
|
||||
{
|
||||
model: "qwen3-vl:8b",
|
||||
},
|
||||
{
|
||||
// Qwen 3 VL mixture of experts
|
||||
model: "qwen3-vl:30b",
|
||||
},
|
||||
}
|
||||
|
||||
for _, v := range testCases {
|
||||
t.Run(v.model, func(t *testing.T) {
|
||||
image, err := base64.StdEncoding.DecodeString(imageEncoding)
|
||||
require.NoError(t, err)
|
||||
req := api.GenerateRequest{
|
||||
Model: v.model,
|
||||
Prompt: "what does the text in this image say?",
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
req := api.ChatRequest{
|
||||
Model: v.model,
|
||||
Messages: []api.Message{
|
||||
{
|
||||
Role: "user",
|
||||
Content: "what does the text in this image say?",
|
||||
Images: []api.ImageData{
|
||||
image,
|
||||
},
|
||||
},
|
||||
},
|
||||
Stream: &stream,
|
||||
Options: map[string]any{
|
||||
"seed": 42,
|
||||
"temperature": 0.0,
|
||||
},
|
||||
Images: []api.ImageData{
|
||||
image,
|
||||
},
|
||||
}
|
||||
ctx, cancel := context.WithTimeout(context.Background(), 5*time.Minute)
|
||||
defer cancel()
|
||||
@@ -52,9 +65,18 @@ func TestVisionModels(t *testing.T) {
|
||||
// Note: sometimes it returns "the ollamas" sometimes "the ollams"
|
||||
resp := "the ollam"
|
||||
defer cleanup()
|
||||
require.NoError(t, PullIfMissing(ctx, client, req.Model))
|
||||
if err := PullIfMissing(ctx, client, req.Model); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
// Preload to skip if we're less than 80% on GPU to avoid extremely slow tests
|
||||
err = client.Generate(ctx, &api.GenerateRequest{Model: req.Model}, func(response api.GenerateResponse) error { return nil })
|
||||
if err != nil {
|
||||
t.Fatalf("failed to load model %s: %s", req.Model, err)
|
||||
}
|
||||
skipIfNotGPULoaded(ctx, t, client, req.Model, 80)
|
||||
|
||||
// llava models on CPU can be quite slow to start
|
||||
DoGenerate(ctx, t, client, req, []string{resp}, 240*time.Second, 30*time.Second)
|
||||
DoChat(ctx, t, client, req, []string{resp}, 240*time.Second, 30*time.Second)
|
||||
})
|
||||
}
|
||||
}
|
||||
@@ -62,7 +84,9 @@ func TestVisionModels(t *testing.T) {
|
||||
func TestIntegrationSplitBatch(t *testing.T) {
|
||||
skipUnderMinVRAM(t, 6)
|
||||
image, err := base64.StdEncoding.DecodeString(imageEncoding)
|
||||
require.NoError(t, err)
|
||||
if err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
req := api.GenerateRequest{
|
||||
Model: "gemma3:4b",
|
||||
// Fill up a chunk of the batch so the image will partially spill over into the next one
|
||||
@@ -84,7 +108,9 @@ func TestIntegrationSplitBatch(t *testing.T) {
|
||||
defer cancel()
|
||||
client, _, cleanup := InitServerConnection(ctx, t)
|
||||
defer cleanup()
|
||||
require.NoError(t, PullIfMissing(ctx, client, req.Model))
|
||||
if err := PullIfMissing(ctx, client, req.Model); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
// llava models on CPU can be quite slow to start,
|
||||
DoGenerate(ctx, t, client, req, []string{resp}, 120*time.Second, 30*time.Second)
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user