mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-18 03:37:09 +00:00
Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from official ollama/ollama repository and re-applying Tesla K80 compatibility patches. ## Key Changes ### CUDA Compute Capability 3.7 Support (Tesla K80) - Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt - Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset - Using 37-virtual (PTX with JIT compilation) for maximum compatibility ### Legacy Toolchain Compatibility - **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80) - **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7) - **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h) ### CPU Architecture Trade-offs Due to GCC 10.5 limitation, sacrificed newer CPU optimizations: - Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+) - Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA - Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility) ### Build System Updates - Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7 - Added -Wno-deprecated-gpu-targets flag to suppress warnings - Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI ### Upstream Sync Merged latest llama.cpp changes including: - Enhanced KV cache management with ISWA and hybrid memory support - Improved multi-modal support (mtmd framework) - New model architectures (Gemma3, Llama4, Qwen3, etc.) - GPU backend improvements for CUDA, Metal, and ROCm - Updated quantization support and GGUF format handling ### Documentation - Updated CLAUDE.md with comprehensive build instructions - Documented toolchain constraints and CPU architecture trade-offs - Removed outdated CI/CD workflows (tesla-k80-*.yml) - Cleaned up temporary development artifacts ## Rationale This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in official Ollama due to legacy driver/CUDA requirements. The toolchain constraint creates a deadlock: - K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI We accept the loss of cutting-edge CPU optimizations to enable running modern LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -40,11 +40,6 @@ type Causal struct {
|
||||
|
||||
// ** current forward pass **
|
||||
|
||||
// curReserve indicates that this forward pass is only for
|
||||
// memory reservation and we should not update our metadata
|
||||
// based on it.
|
||||
curReserve bool
|
||||
|
||||
// the active layer for Get and Put
|
||||
curLayer int
|
||||
|
||||
@@ -160,7 +155,15 @@ func (c *Causal) Init(backend ml.Backend, dtype ml.DType, maxSequences, capacity
|
||||
if c.swaMemorySize == 0 {
|
||||
c.swaMemorySize = c.swaWindowSize
|
||||
}
|
||||
if int(c.swaMemorySize) > capacity {
|
||||
// We will allocate space in the cache for the stop token, which won't be part of a follow on
|
||||
// sequence, so allocate an extra token of storage to ensure that we can jump back without
|
||||
// causing a cache break. As an optimization, only do this when we have parallel sequences
|
||||
// because the extra token will live in the batch buffer and won't get overwritten if we
|
||||
// only have a single sequence.
|
||||
if c.swaMemorySize != math.MaxInt32 && maxSequences > 1 {
|
||||
c.swaMemorySize = max(c.swaMemorySize, c.swaWindowSize+1)
|
||||
}
|
||||
if int(c.swaMemorySize) >= capacity {
|
||||
c.swaMemorySize = math.MaxInt32
|
||||
}
|
||||
|
||||
@@ -198,13 +201,12 @@ func (c *Causal) Close() {
|
||||
}
|
||||
|
||||
func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) error {
|
||||
c.curReserve = reserve
|
||||
c.curBatchSize = len(batch.Positions)
|
||||
c.curSequences = batch.Sequences
|
||||
c.curPositions = batch.Positions
|
||||
c.opts.Except = nil
|
||||
|
||||
if !c.curReserve {
|
||||
if !reserve {
|
||||
c.updateSlidingWindow()
|
||||
|
||||
var err error
|
||||
@@ -214,7 +216,6 @@ func (c *Causal) StartForward(ctx ml.Context, batch input.Batch, reserve bool) e
|
||||
c.curLoc, err = c.findStartLoc()
|
||||
}
|
||||
if err != nil {
|
||||
slog.Warn("unable to find a kv cache slot", "cache", c)
|
||||
return err
|
||||
}
|
||||
|
||||
@@ -288,23 +289,44 @@ func (c *Causal) updateSlidingWindow() {
|
||||
return
|
||||
}
|
||||
|
||||
type lowestPosition struct {
|
||||
pos int32
|
||||
curBatch bool
|
||||
}
|
||||
|
||||
// create a map of unique sequences to the lowest position in that sequence
|
||||
lowestPos := make(map[int]int32)
|
||||
lowestPos := make(map[int]lowestPosition)
|
||||
for i := range c.curPositions {
|
||||
seq := c.curSequences[i]
|
||||
|
||||
pos, ok := lowestPos[seq]
|
||||
lowest, ok := lowestPos[seq]
|
||||
if !ok {
|
||||
pos = c.curPositions[i]
|
||||
} else if c.curPositions[i] < pos {
|
||||
pos = c.curPositions[i]
|
||||
lowest = lowestPosition{pos: c.curPositions[i], curBatch: true}
|
||||
} else if c.curPositions[i] < lowest.pos {
|
||||
lowest.pos = c.curPositions[i]
|
||||
}
|
||||
|
||||
lowestPos[seq] = pos
|
||||
lowestPos[seq] = lowest
|
||||
}
|
||||
|
||||
// for any sequences are not part of this batch, clean up any tokens
|
||||
// that are no longer needed after the processing of the previous
|
||||
// batch
|
||||
for seq, seqRange := range c.cellRanges {
|
||||
if _, ok := lowestPos[seq]; !ok {
|
||||
var last int32
|
||||
for i := seqRange.min; i <= seqRange.max; i++ {
|
||||
if slices.Contains(c.cells[i].sequences, seq) {
|
||||
last = max(last, c.cells[i].pos)
|
||||
}
|
||||
}
|
||||
|
||||
lowestPos[seq] = lowestPosition{pos: last + 1, curBatch: false}
|
||||
}
|
||||
}
|
||||
|
||||
// delete any entries that are beyond the window of the oldest position in the sequence
|
||||
for seq, pos := range lowestPos {
|
||||
for seq, lowest := range lowestPos {
|
||||
oldRange, ok := c.cellRanges[seq]
|
||||
if !ok {
|
||||
continue
|
||||
@@ -314,13 +336,13 @@ func (c *Causal) updateSlidingWindow() {
|
||||
|
||||
for i := oldRange.min; i <= oldRange.max; i++ {
|
||||
if slices.Contains(c.cells[i].sequences, seq) {
|
||||
if c.cells[i].pos < pos-c.swaMemorySize {
|
||||
if c.cells[i].pos < lowest.pos-c.swaMemorySize {
|
||||
c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s int) bool { return s == seq })
|
||||
} else {
|
||||
newRange.min = min(newRange.min, i)
|
||||
newRange.max = max(newRange.max, i)
|
||||
}
|
||||
if c.cells[i].pos >= pos-c.swaWindowSize {
|
||||
if lowest.curBatch && c.cells[i].pos >= lowest.pos-c.swaWindowSize {
|
||||
c.curCellRange.min = min(c.curCellRange.min, i)
|
||||
c.curCellRange.max = max(c.curCellRange.max, i)
|
||||
}
|
||||
@@ -351,10 +373,6 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
|
||||
|
||||
length := c.curCellRange.max - c.curCellRange.min + 1
|
||||
|
||||
if c.curReserve {
|
||||
return ctx.Input().Empty(c.config.MaskDType, length, batchSize)
|
||||
}
|
||||
|
||||
mask := make([]float32, batchSize*length)
|
||||
|
||||
for i := range c.curBatchSize {
|
||||
@@ -375,12 +393,10 @@ func (c *Causal) buildMask(ctx ml.Context) ml.Tensor {
|
||||
mask[i] = float32(math.Inf(-1))
|
||||
}
|
||||
|
||||
maskTensor := ctx.Input().FromFloatSlice(mask, length, batchSize)
|
||||
maskTensor := ctx.Input().FromFloats(mask, length, batchSize)
|
||||
|
||||
if c.config.MaskDType != ml.DTypeF32 {
|
||||
out := ctx.Input().Empty(c.config.MaskDType, maskTensor.Shape()...)
|
||||
ctx.Forward(maskTensor.Copy(ctx, out))
|
||||
maskTensor = out
|
||||
maskTensor = maskTensor.Cast(ctx, c.config.MaskDType)
|
||||
}
|
||||
|
||||
return maskTensor
|
||||
@@ -659,9 +675,11 @@ func (c *Causal) CanResume(seq int, pos int32) bool {
|
||||
|
||||
// for sliding window, check that the window of the new sequence is contained in
|
||||
// the window of what we are storing
|
||||
var first int32 = math.MaxInt32
|
||||
var last int32 = -1
|
||||
for i := seqRange.min; i <= seqRange.max; i++ {
|
||||
if slices.Contains(c.cells[i].sequences, seq) {
|
||||
first = min(first, c.cells[i].pos)
|
||||
last = max(last, c.cells[i].pos)
|
||||
}
|
||||
}
|
||||
@@ -670,10 +688,8 @@ func (c *Causal) CanResume(seq int, pos int32) bool {
|
||||
return false
|
||||
}
|
||||
|
||||
lastWindowStart := max(0, last-c.swaMemorySize)
|
||||
posWindowStart := max(0, pos-c.swaWindowSize)
|
||||
|
||||
return posWindowStart >= lastWindowStart
|
||||
return posWindowStart >= first && pos <= last+1
|
||||
}
|
||||
|
||||
func (c *Causal) shift(seq int, beginIndex, offset int32) error {
|
||||
@@ -709,7 +725,7 @@ func (c *Causal) shift(seq int, beginIndex, offset int32) error {
|
||||
offsets = offsets[batchFirst : batchLast+1]
|
||||
|
||||
ctx := c.backend.NewContext()
|
||||
kShift := ctx.Input().FromIntSlice(offsets, len(offsets))
|
||||
kShift := ctx.Input().FromInts(offsets, len(offsets))
|
||||
|
||||
for i, key := range c.keys {
|
||||
if key == nil {
|
||||
|
||||
Reference in New Issue
Block a user