mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-18 11:47:07 +00:00
Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from official ollama/ollama repository and re-applying Tesla K80 compatibility patches. ## Key Changes ### CUDA Compute Capability 3.7 Support (Tesla K80) - Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt - Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset - Using 37-virtual (PTX with JIT compilation) for maximum compatibility ### Legacy Toolchain Compatibility - **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80) - **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7) - **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h) ### CPU Architecture Trade-offs Due to GCC 10.5 limitation, sacrificed newer CPU optimizations: - Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+) - Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA - Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility) ### Build System Updates - Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7 - Added -Wno-deprecated-gpu-targets flag to suppress warnings - Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI ### Upstream Sync Merged latest llama.cpp changes including: - Enhanced KV cache management with ISWA and hybrid memory support - Improved multi-modal support (mtmd framework) - New model architectures (Gemma3, Llama4, Qwen3, etc.) - GPU backend improvements for CUDA, Metal, and ROCm - Updated quantization support and GGUF format handling ### Documentation - Updated CLAUDE.md with comprehensive build instructions - Documented toolchain constraints and CPU architecture trade-offs - Removed outdated CI/CD workflows (tesla-k80-*.yml) - Cleaned up temporary development artifacts ## Rationale This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in official Ollama due to legacy driver/CUDA requirements. The toolchain constraint creates a deadlock: - K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI We accept the loss of cutting-edge CPU optimizations to enable running modern LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -8,9 +8,186 @@ import (
|
||||
"testing"
|
||||
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/format"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"golang.org/x/sync/semaphore"
|
||||
)
|
||||
|
||||
func TestLLMServerFitGPU(t *testing.T) {
|
||||
type gpu struct {
|
||||
id ml.DeviceID
|
||||
free int
|
||||
}
|
||||
|
||||
minMemory := 457 * format.MebiByte
|
||||
|
||||
tests := []struct {
|
||||
name string
|
||||
gpus []gpu
|
||||
layers []int
|
||||
numGPU int
|
||||
requireFull bool
|
||||
expected ml.GPULayersList
|
||||
expectedErr error
|
||||
}{
|
||||
{
|
||||
name: "No GPU",
|
||||
layers: []int{50 * format.MebiByte, 50 * format.MebiByte, 50 * format.MebiByte},
|
||||
numGPU: -1,
|
||||
expected: ml.GPULayersList{},
|
||||
},
|
||||
{
|
||||
name: "Full single GPU",
|
||||
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 256*format.MebiByte + minMemory}},
|
||||
layers: []int{50 * format.MebiByte, 50 * format.MebiByte, 50 * format.MebiByte},
|
||||
numGPU: -1,
|
||||
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu0"}, Layers: []int{0, 1, 2}}},
|
||||
},
|
||||
{
|
||||
name: "Partial single GPU",
|
||||
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 256*format.MebiByte + minMemory}},
|
||||
layers: []int{100 * format.MebiByte, 100 * format.MebiByte, 100 * format.MebiByte, 100 * format.MebiByte},
|
||||
numGPU: -1,
|
||||
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu0"}, Layers: []int{1, 2}}},
|
||||
},
|
||||
{
|
||||
name: "Single GPU with numGPU 1",
|
||||
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 256*format.MebiByte + minMemory}},
|
||||
layers: []int{50 * format.MebiByte, 50 * format.MebiByte, 50 * format.MebiByte},
|
||||
numGPU: 1,
|
||||
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu0"}, Layers: []int{1}}},
|
||||
},
|
||||
{
|
||||
name: "Single GPU with numGPU 0",
|
||||
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 256*format.MebiByte + minMemory}},
|
||||
layers: []int{50 * format.MebiByte, 50 * format.MebiByte, 50 * format.MebiByte},
|
||||
numGPU: 0,
|
||||
expected: ml.GPULayersList{},
|
||||
},
|
||||
{
|
||||
name: "Single GPU with numGPU 999",
|
||||
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 256*format.MebiByte + minMemory}},
|
||||
layers: []int{100 * format.MebiByte, 100 * format.MebiByte, 100 * format.MebiByte, 100 * format.MebiByte},
|
||||
numGPU: 999,
|
||||
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu0"}, Layers: []int{0, 1, 2, 3}}},
|
||||
},
|
||||
{
|
||||
name: "Multi GPU fits on one",
|
||||
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 128*format.MebiByte + minMemory}, {id: ml.DeviceID{ID: "gpu1"}, free: 256*format.MebiByte + minMemory}},
|
||||
layers: []int{50 * format.MebiByte, 50 * format.MebiByte, 50 * format.MebiByte},
|
||||
numGPU: -1,
|
||||
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu1"}, Layers: []int{0, 1, 2}}},
|
||||
},
|
||||
{
|
||||
name: "Multi GPU split",
|
||||
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 128*format.MebiByte + minMemory}, {id: ml.DeviceID{ID: "gpu1"}, free: 256*format.MebiByte + minMemory}},
|
||||
layers: []int{256 * format.MebiByte, 50 * format.MebiByte, 50 * format.MebiByte},
|
||||
numGPU: -1,
|
||||
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu1"}, Layers: []int{0}}, {DeviceID: ml.DeviceID{ID: "gpu0"}, Layers: []int{1, 2}}},
|
||||
},
|
||||
{
|
||||
name: "Multi GPU partial",
|
||||
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 128*format.MebiByte + minMemory}, {id: ml.DeviceID{ID: "gpu1"}, free: 256*format.MebiByte + minMemory}},
|
||||
layers: []int{256 * format.MebiByte, 256 * format.MebiByte, 50 * format.MebiByte},
|
||||
numGPU: -1,
|
||||
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu1"}, Layers: []int{1}}},
|
||||
},
|
||||
{
|
||||
name: "Multi GPU numGPU 1",
|
||||
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 128*format.MebiByte + minMemory}, {id: ml.DeviceID{ID: "gpu1"}, free: 256*format.MebiByte + minMemory}},
|
||||
layers: []int{50 * format.MebiByte, 50 * format.MebiByte, 50 * format.MebiByte},
|
||||
numGPU: 1,
|
||||
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu1"}, Layers: []int{1}}},
|
||||
},
|
||||
{
|
||||
name: "Multi GPU numGPU 2",
|
||||
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 128*format.MebiByte + minMemory}, {id: ml.DeviceID{ID: "gpu1"}, free: 256*format.MebiByte + minMemory}},
|
||||
layers: []int{256 * format.MebiByte, 50 * format.MebiByte, 50 * format.MebiByte},
|
||||
numGPU: 2,
|
||||
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu1"}, Layers: []int{0}}, {DeviceID: ml.DeviceID{ID: "gpu0"}, Layers: []int{1}}},
|
||||
},
|
||||
{
|
||||
name: "Multi GPU numGPU 999",
|
||||
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 128*format.MebiByte + minMemory}, {id: ml.DeviceID{ID: "gpu1"}, free: 256*format.MebiByte + minMemory}},
|
||||
layers: []int{256 * format.MebiByte, 256 * format.MebiByte, 50 * format.MebiByte},
|
||||
numGPU: 999,
|
||||
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu1"}, Layers: []int{0, 1}}, {DeviceID: ml.DeviceID{ID: "gpu0"}, Layers: []int{2}}},
|
||||
},
|
||||
{
|
||||
name: "Multi GPU different libraries",
|
||||
gpus: []gpu{{id: ml.DeviceID{Library: "CUDA", ID: "gpu0"}, free: 128*format.MebiByte + minMemory}, {id: ml.DeviceID{Library: "ROCm", ID: "gpu1"}, free: 256*format.MebiByte + minMemory}},
|
||||
layers: []int{128 * format.MebiByte, 128 * format.MebiByte, 50 * format.MebiByte},
|
||||
numGPU: -1,
|
||||
expected: ml.GPULayersList{{DeviceID: ml.DeviceID{ID: "gpu1", Library: "ROCm"}, Layers: []int{0, 1}}},
|
||||
},
|
||||
{
|
||||
name: "requireFull",
|
||||
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 256*format.MebiByte + minMemory}},
|
||||
layers: []int{100 * format.MebiByte, 100 * format.MebiByte, 100 * format.MebiByte, 100 * format.MebiByte},
|
||||
numGPU: -1,
|
||||
requireFull: true,
|
||||
expectedErr: ErrLoadRequiredFull,
|
||||
},
|
||||
{
|
||||
name: "requireFull numGPU",
|
||||
gpus: []gpu{{id: ml.DeviceID{ID: "gpu0"}, free: 256 * format.MebiByte}},
|
||||
layers: []int{100 * format.MebiByte, 100 * format.MebiByte, 100 * format.MebiByte, 100 * format.MebiByte},
|
||||
numGPU: 4,
|
||||
requireFull: true,
|
||||
expectedErr: ErrLoadRequiredFull,
|
||||
},
|
||||
}
|
||||
|
||||
for _, tt := range tests {
|
||||
t.Run(tt.name, func(t *testing.T) {
|
||||
var systemInfo ml.SystemInfo
|
||||
systemInfo.TotalMemory = format.GibiByte
|
||||
systemInfo.FreeMemory = 512 * format.MebiByte
|
||||
systemInfo.FreeSwap = 256 * format.MebiByte
|
||||
|
||||
gpus := make([]ml.DeviceInfo, len(tt.gpus))
|
||||
for i := range tt.gpus {
|
||||
gpus[i].DeviceID = tt.gpus[i].id
|
||||
gpus[i].FreeMemory = uint64(tt.gpus[i].free)
|
||||
}
|
||||
|
||||
s := &ollamaServer{
|
||||
llmServer: llmServer{
|
||||
totalLayers: uint64(len(tt.layers)),
|
||||
options: api.Options{
|
||||
Runner: api.Runner{
|
||||
NumGPU: tt.numGPU,
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
s.mem = &ml.BackendMemory{CPU: ml.DeviceMemory{
|
||||
Weights: make([]uint64, s.totalLayers),
|
||||
Cache: make([]uint64, s.totalLayers),
|
||||
}, GPUs: make([]ml.DeviceMemory, len(gpus))}
|
||||
|
||||
for i := range tt.layers {
|
||||
s.mem.CPU.Weights[i] = uint64(tt.layers[i])
|
||||
}
|
||||
|
||||
for i := range s.mem.GPUs {
|
||||
s.mem.GPUs[i].DeviceID = gpus[i].DeviceID
|
||||
s.mem.GPUs[i].Weights = make([]uint64, s.totalLayers)
|
||||
s.mem.GPUs[i].Cache = make([]uint64, s.totalLayers)
|
||||
}
|
||||
|
||||
gpuLayers, err := s.createLayout(systemInfo, gpus, s.mem, tt.requireFull, 0)
|
||||
if err != tt.expectedErr {
|
||||
t.Fatalf("fitGPU returned error: %v", err)
|
||||
}
|
||||
if gpuLayers.Hash() != tt.expected.Hash() {
|
||||
t.Errorf("fitGPU assigned %v, want %v", gpuLayers, tt.expected)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
func TestLLMServerCompletionFormat(t *testing.T) {
|
||||
// This test was written to fix an already deployed issue. It is a bit
|
||||
// of a mess, and but it's good enough, until we can refactoring the
|
||||
|
||||
Reference in New Issue
Block a user