Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support

This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Shang Chieh Tseng
2025-11-05 14:03:05 +08:00
parent fabe2c5cb7
commit ef14fb5b26
817 changed files with 241634 additions and 70888 deletions

View File

@@ -22,6 +22,11 @@ import (
//
// Attention output with shape [d_v, heads, seq_len_q]
func Attention(ctx ml.Context, query, key, value ml.Tensor, scale float64, cache kvcache.Cache) ml.Tensor {
return AttentionWithSinks(ctx, query, key, value, nil, scale, cache)
}
func AttentionWithSinks(ctx ml.Context, query, key, value, sinks ml.Tensor, scale float64, cache kvcache.Cache) ml.Tensor {
ctx.Forward(query)
if key != nil && value != nil {
if query.Dim(0) != key.Dim(0) {
panic(fmt.Errorf("d_k in attention operation does not match between query(%v) and key(%v)", query.Dim(0), key.Dim(0)))
@@ -35,6 +40,7 @@ func Attention(ctx ml.Context, query, key, value ml.Tensor, scale float64, cache
panic(fmt.Errorf("seq_len_k in attention operation does not match between key(%v) and value(%v)", key.Dim(2), value.Dim(2)))
}
ctx.Forward(key, value)
if cache != nil {
cache.Put(ctx, key, value)
}
@@ -50,7 +56,7 @@ func Attention(ctx ml.Context, query, key, value ml.Tensor, scale float64, cache
// Only use the fast SDPA implementation if we have a cache, since that's what
// will do any expected backend-specific transformations for us
if sdpa, ok := query.(ml.ScaledDotProductAttention); ok && cache != nil {
return sdpa.ScaledDotProductAttention(ctx, key, value, mask, scale)
return sdpa.ScaledDotProductAttention(ctx, key, value, mask, sinks, scale)
} else {
query = query.Permute(ctx, 0, 2, 1, 3)
key = key.Permute(ctx, 0, 2, 1, 3)

View File

@@ -4,8 +4,27 @@ import "github.com/ollama/ollama/ml"
type Conv2D struct {
Weight ml.Tensor `gguf:"weight"`
Bias ml.Tensor `gguf:"bias"`
}
func (m *Conv2D) Forward(ctx ml.Context, t ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
return m.Weight.Conv2D(ctx, t, s0, s1, p0, p1, d0, d1)
t = m.Weight.Conv2D(ctx, t, s0, s1, p0, p1, d0, d1)
if m.Bias != nil {
// Bias shape is (out_channels,) while t shape is (width, height, out_channels, batch)
t = t.Add(ctx, m.Bias.Reshape(ctx, 1, 1, -1))
}
return t
}
type Conv3D struct {
Weight ml.Tensor `gguf:"weight"`
Bias ml.Tensor `gguf:"bias"`
}
func (m *Conv3D) Forward(ctx ml.Context, t ml.Tensor, c, s0, s1, s2, p0, p1, p2, d0, d1, d2 int) ml.Tensor {
t = m.Weight.Conv3D(ctx, t, c, s0, s1, s2, p0, p1, p2, d0, d1, d2)
if m.Bias != nil {
t = t.Add(ctx, m.Bias)
}
return t
}

View File

@@ -24,16 +24,7 @@ type LinearBatch struct {
func (m *LinearBatch) Forward(ctx ml.Context, t, indices ml.Tensor) ml.Tensor {
t = m.Weight.MulmatID(ctx, t, indices)
if m.Bias != nil {
var bias ml.Tensor
if len(indices.Shape()) > 1 {
// FIXME: Rows does not support 2D indices for a 2D input tensor so reshape indices to 1D.
bias = m.Bias.Rows(ctx, indices.Contiguous(ctx, indices.Dim(0)*indices.Dim(1))).
Duplicate(ctx).
Reshape(ctx, m.Bias.Dim(0), indices.Dim(0), indices.Dim(1))
} else {
bias = m.Bias.Rows(ctx, indices)
}
t = t.Add(ctx, bias)
t = t.AddID(ctx, m.Bias, indices)
}
return t

42
ml/nn/pooling/pooling.go Normal file
View File

@@ -0,0 +1,42 @@
package pooling
import (
"github.com/ollama/ollama/ml"
)
type Type uint32
const (
TypeNone Type = iota
TypeMean
TypeCLS
TypeLast
)
func (t Type) String() string {
switch t {
case TypeMean:
return "Mean"
case TypeCLS:
return "CLS"
case TypeLast:
return "Last"
default:
return "Unknown"
}
}
func (t Type) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
switch t {
case TypeMean:
hiddenStates = hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mean(ctx)
return hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
case TypeCLS:
return hiddenStates.View(ctx, 0, hiddenStates.Dim(0))
case TypeLast:
hiddenStates = hiddenStates.View(ctx, (hiddenStates.Dim(1)-1)*hiddenStates.Stride(1), hiddenStates.Dim(0))
return hiddenStates
default:
panic("unknown pooling type")
}
}

View File

@@ -0,0 +1,64 @@
package pooling_test
import (
"bytes"
"os"
"testing"
"github.com/google/go-cmp/cmp"
fsggml "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/backend/ggml"
"github.com/ollama/ollama/ml/nn/pooling"
)
func setup(tb testing.TB, n int) ml.Backend {
tb.Helper()
f, err := os.CreateTemp(tb.TempDir(), "*.bin")
if err != nil {
tb.Fatal(err)
}
defer f.Close()
if err := fsggml.WriteGGUF(f, fsggml.KV{
"general.architecture": "test",
"test.block_count": uint32(1),
}, []*fsggml.Tensor{
{Name: "blk.0.weight", Shape: []uint64{1}, WriterTo: bytes.NewBuffer(make([]byte, 4))},
}); err != nil {
tb.Fatal(err)
}
b, err := ggml.New(f.Name(), ml.BackendParams{AllocMemory: true})
if err != nil {
tb.Fatal(err)
}
return b
}
func TestForward(t *testing.T) {
cases := map[pooling.Type][]float32{
pooling.TypeMean: {4, 5, 6, 7, 8, 9, 10, 11},
pooling.TypeCLS: {0, 1, 2, 3, 4, 5, 6, 7},
pooling.TypeLast: {8, 9, 10, 11, 12, 13, 14, 15},
}
for typ, want := range cases {
t.Run(typ.String(), func(t *testing.T) {
b := setup(t, 99)
defer b.Close()
ctx := b.NewContext()
defer ctx.Close()
tt := ctx.Input().Arange(0, 16, 1, ml.DTypeF32).Reshape(ctx, 8, 2)
tt = typ.Forward(ctx, tt)
ctx.Forward(tt).Compute(tt)
if diff := cmp.Diff(want, tt.Floats()); diff != "" {
t.Error(diff)
}
})
}
}

View File

@@ -4,25 +4,25 @@ import "github.com/ollama/ollama/ml"
// Options contains optional parameters for RoPE function
type Options struct {
Type int
Factors ml.Tensor
OriginalContextLength int
Type int
Factors ml.Tensor
// YaRN options
ExtrapolationFactor,
AttentionFactor,
BetaFast,
BetaSlow float32
}
YaRN struct {
OriginalContextLength int
ExtrapolationFactor,
AttentionFactor,
BetaFast,
BetaSlow float32
}
// WithOriginalContextLength sets a custom context length
func WithOriginalContextLength(n int) func(*Options) {
return func(opts *Options) {
opts.OriginalContextLength = n
// MRoPE options
MRoPE struct {
Sections []int
}
}
// WithType sets RoPE type to NeoX
// WithTypeNeoX sets RoPE type to NeoX
func WithTypeNeoX() func(*Options) {
return func(opts *Options) {
opts.Type = 2
@@ -38,14 +38,28 @@ func WithFactors(factors ml.Tensor) func(*Options) {
}
}
// WithOriginalContextLength sets a custom context length
func WithOriginalContextLength(n int) func(*Options) {
return func(opts *Options) {
opts.YaRN.OriginalContextLength = n
}
}
func WithExtrapolationFactor(extrapolationFactor float32) func(*Options) {
return func(opts *Options) {
opts.ExtrapolationFactor = extrapolationFactor
opts.YaRN.ExtrapolationFactor = extrapolationFactor
}
}
func WithAttentionFactor(attentionFactor float32) func(*Options) {
return func(opts *Options) {
opts.AttentionFactor = attentionFactor
opts.YaRN.AttentionFactor = attentionFactor
}
}
func WithMRoPESections(sections []int) func(*Options) {
return func(opts *Options) {
opts.Type |= 1 << 3
opts.MRoPE.Sections = sections
}
}