mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-15 10:17:03 +00:00
Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from official ollama/ollama repository and re-applying Tesla K80 compatibility patches. ## Key Changes ### CUDA Compute Capability 3.7 Support (Tesla K80) - Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt - Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset - Using 37-virtual (PTX with JIT compilation) for maximum compatibility ### Legacy Toolchain Compatibility - **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80) - **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7) - **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h) ### CPU Architecture Trade-offs Due to GCC 10.5 limitation, sacrificed newer CPU optimizations: - Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+) - Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA - Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility) ### Build System Updates - Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7 - Added -Wno-deprecated-gpu-targets flag to suppress warnings - Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI ### Upstream Sync Merged latest llama.cpp changes including: - Enhanced KV cache management with ISWA and hybrid memory support - Improved multi-modal support (mtmd framework) - New model architectures (Gemma3, Llama4, Qwen3, etc.) - GPU backend improvements for CUDA, Metal, and ROCm - Updated quantization support and GGUF format handling ### Documentation - Updated CLAUDE.md with comprehensive build instructions - Documented toolchain constraints and CPU architecture trade-offs - Removed outdated CI/CD workflows (tesla-k80-*.yml) - Cleaned up temporary development artifacts ## Rationale This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in official Ollama due to legacy driver/CUDA requirements. The toolchain constraint creates a deadlock: - K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI We accept the loss of cutting-edge CPU optimizations to enable running modern LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
42
ml/nn/pooling/pooling.go
Normal file
42
ml/nn/pooling/pooling.go
Normal file
@@ -0,0 +1,42 @@
|
||||
package pooling
|
||||
|
||||
import (
|
||||
"github.com/ollama/ollama/ml"
|
||||
)
|
||||
|
||||
type Type uint32
|
||||
|
||||
const (
|
||||
TypeNone Type = iota
|
||||
TypeMean
|
||||
TypeCLS
|
||||
TypeLast
|
||||
)
|
||||
|
||||
func (t Type) String() string {
|
||||
switch t {
|
||||
case TypeMean:
|
||||
return "Mean"
|
||||
case TypeCLS:
|
||||
return "CLS"
|
||||
case TypeLast:
|
||||
return "Last"
|
||||
default:
|
||||
return "Unknown"
|
||||
}
|
||||
}
|
||||
|
||||
func (t Type) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
|
||||
switch t {
|
||||
case TypeMean:
|
||||
hiddenStates = hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx).Mean(ctx)
|
||||
return hiddenStates.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
||||
case TypeCLS:
|
||||
return hiddenStates.View(ctx, 0, hiddenStates.Dim(0))
|
||||
case TypeLast:
|
||||
hiddenStates = hiddenStates.View(ctx, (hiddenStates.Dim(1)-1)*hiddenStates.Stride(1), hiddenStates.Dim(0))
|
||||
return hiddenStates
|
||||
default:
|
||||
panic("unknown pooling type")
|
||||
}
|
||||
}
|
||||
64
ml/nn/pooling/pooling_test.go
Normal file
64
ml/nn/pooling/pooling_test.go
Normal file
@@ -0,0 +1,64 @@
|
||||
package pooling_test
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"os"
|
||||
"testing"
|
||||
|
||||
"github.com/google/go-cmp/cmp"
|
||||
fsggml "github.com/ollama/ollama/fs/ggml"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/ml/backend/ggml"
|
||||
"github.com/ollama/ollama/ml/nn/pooling"
|
||||
)
|
||||
|
||||
func setup(tb testing.TB, n int) ml.Backend {
|
||||
tb.Helper()
|
||||
|
||||
f, err := os.CreateTemp(tb.TempDir(), "*.bin")
|
||||
if err != nil {
|
||||
tb.Fatal(err)
|
||||
}
|
||||
defer f.Close()
|
||||
|
||||
if err := fsggml.WriteGGUF(f, fsggml.KV{
|
||||
"general.architecture": "test",
|
||||
"test.block_count": uint32(1),
|
||||
}, []*fsggml.Tensor{
|
||||
{Name: "blk.0.weight", Shape: []uint64{1}, WriterTo: bytes.NewBuffer(make([]byte, 4))},
|
||||
}); err != nil {
|
||||
tb.Fatal(err)
|
||||
}
|
||||
|
||||
b, err := ggml.New(f.Name(), ml.BackendParams{AllocMemory: true})
|
||||
if err != nil {
|
||||
tb.Fatal(err)
|
||||
}
|
||||
|
||||
return b
|
||||
}
|
||||
|
||||
func TestForward(t *testing.T) {
|
||||
cases := map[pooling.Type][]float32{
|
||||
pooling.TypeMean: {4, 5, 6, 7, 8, 9, 10, 11},
|
||||
pooling.TypeCLS: {0, 1, 2, 3, 4, 5, 6, 7},
|
||||
pooling.TypeLast: {8, 9, 10, 11, 12, 13, 14, 15},
|
||||
}
|
||||
for typ, want := range cases {
|
||||
t.Run(typ.String(), func(t *testing.T) {
|
||||
b := setup(t, 99)
|
||||
defer b.Close()
|
||||
|
||||
ctx := b.NewContext()
|
||||
defer ctx.Close()
|
||||
|
||||
tt := ctx.Input().Arange(0, 16, 1, ml.DTypeF32).Reshape(ctx, 8, 2)
|
||||
tt = typ.Forward(ctx, tt)
|
||||
|
||||
ctx.Forward(tt).Compute(tt)
|
||||
if diff := cmp.Diff(want, tt.Floats()); diff != "" {
|
||||
t.Error(diff)
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user