mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-18 11:47:07 +00:00
Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from official ollama/ollama repository and re-applying Tesla K80 compatibility patches. ## Key Changes ### CUDA Compute Capability 3.7 Support (Tesla K80) - Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt - Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset - Using 37-virtual (PTX with JIT compilation) for maximum compatibility ### Legacy Toolchain Compatibility - **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80) - **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7) - **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h) ### CPU Architecture Trade-offs Due to GCC 10.5 limitation, sacrificed newer CPU optimizations: - Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+) - Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA - Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility) ### Build System Updates - Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7 - Added -Wno-deprecated-gpu-targets flag to suppress warnings - Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI ### Upstream Sync Merged latest llama.cpp changes including: - Enhanced KV cache management with ISWA and hybrid memory support - Improved multi-modal support (mtmd framework) - New model architectures (Gemma3, Llama4, Qwen3, etc.) - GPU backend improvements for CUDA, Metal, and ROCm - Updated quantization support and GGUF format handling ### Documentation - Updated CLAUDE.md with comprehensive build instructions - Documented toolchain constraints and CPU architecture trade-offs - Removed outdated CI/CD workflows (tesla-k80-*.yml) - Cleaned up temporary development artifacts ## Rationale This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in official Ollama due to legacy driver/CUDA requirements. The toolchain constraint creates a deadlock: - K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI We accept the loss of cutting-edge CPU optimizations to enable running modern LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -2,10 +2,10 @@ package model
|
||||
|
||||
import (
|
||||
"cmp"
|
||||
"context"
|
||||
"fmt"
|
||||
"iter"
|
||||
"log/slog"
|
||||
"slices"
|
||||
"strings"
|
||||
|
||||
"github.com/dlclark/regexp2"
|
||||
@@ -14,16 +14,28 @@ import (
|
||||
)
|
||||
|
||||
type BytePairEncoding struct {
|
||||
pre *regexp2.Regexp
|
||||
vocab *Vocabulary
|
||||
vocab *Vocabulary
|
||||
regexps []*regexp2.Regexp
|
||||
}
|
||||
|
||||
var _ TextProcessor = (*BytePairEncoding)(nil)
|
||||
|
||||
func NewBytePairEncoding(pre string, vocab *Vocabulary) BytePairEncoding {
|
||||
func NewBytePairEncoding(vocab *Vocabulary, pretokenizers ...string) BytePairEncoding {
|
||||
if len(pretokenizers) == 0 {
|
||||
// set default byte-level pretokenizer if none provided, e.g.
|
||||
// https://github.com/huggingface/tokenizers/blob/main/tokenizers/src/pre_tokenizers/byte_level.rs#L44
|
||||
pretokenizers = []string{`'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+`}
|
||||
}
|
||||
|
||||
return BytePairEncoding{
|
||||
pre: regexp2.MustCompile(pre, regexp2.None),
|
||||
vocab: vocab,
|
||||
regexps: slices.Collect(func(yield func(*regexp2.Regexp) bool) {
|
||||
for _, p := range pretokenizers {
|
||||
if !yield(regexp2.MustCompile(p, regexp2.RE2)) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -36,13 +48,36 @@ func (bpe BytePairEncoding) Is(id int32, special Special) bool {
|
||||
}
|
||||
|
||||
func (bpe *BytePairEncoding) split(s string) iter.Seq[string] {
|
||||
return func(yield func(string) bool) {
|
||||
for m, _ := bpe.pre.FindStringMatch(s); m != nil; m, _ = bpe.pre.FindNextMatch(m) {
|
||||
if !yield(m.String()) {
|
||||
break
|
||||
parts := []string{s}
|
||||
for _, re := range bpe.regexps {
|
||||
parts = slices.Collect(func(yield func(string) bool) {
|
||||
for _, part := range parts {
|
||||
r := []rune(part)
|
||||
var offset int
|
||||
for m, _ := re.FindRunesMatch(r); m != nil; m, _ = re.FindNextMatch(m) {
|
||||
if offset-m.Index != 0 {
|
||||
if !yield(string(r[:m.Index])) {
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
if !yield(m.String()) {
|
||||
return
|
||||
}
|
||||
|
||||
offset = m.Index + m.Length
|
||||
}
|
||||
|
||||
if offset < len(r) {
|
||||
if !yield(string(r[offset:])) {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
return slices.Values(parts)
|
||||
}
|
||||
|
||||
// fragment is a string fragment and their corresponding token IDs
|
||||
@@ -109,7 +144,7 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
|
||||
r = 0x0143
|
||||
case r <= 0x0020:
|
||||
r = r + 0x0100
|
||||
case r >= 0x007e && r <= 0x00a0:
|
||||
case r >= 0x007f && r <= 0x00a0:
|
||||
r = r + 0x00a2
|
||||
}
|
||||
|
||||
@@ -202,12 +237,11 @@ func (bpe BytePairEncoding) Encode(s string, addSpecial bool) ([]int32, error) {
|
||||
}
|
||||
}
|
||||
|
||||
slog.Log(context.TODO(), logutil.LevelTrace, "encoded", "string", s, "ids", ids)
|
||||
|
||||
if addSpecial && len(ids) > 0 {
|
||||
ids = bpe.vocab.addSpecials(ids)
|
||||
}
|
||||
|
||||
logutil.Trace("encoded", "string", s, "ids", ids)
|
||||
return ids, nil
|
||||
}
|
||||
|
||||
@@ -243,6 +277,6 @@ func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
|
||||
}
|
||||
}
|
||||
|
||||
slog.Log(context.TODO(), logutil.LevelTrace, "decoded", "string", sb.String(), "from", lazyIdsString{ids: ids})
|
||||
logutil.Trace("decoded", "string", sb.String(), "from", lazyIdsString{ids: ids})
|
||||
return sb.String(), nil
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user