Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support

This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Shang Chieh Tseng
2025-11-05 14:03:05 +08:00
parent fabe2c5cb7
commit ef14fb5b26
817 changed files with 241634 additions and 70888 deletions

181
model/models/bert/embed.go Normal file
View File

@@ -0,0 +1,181 @@
package bert
import (
"cmp"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
TypeEmbedding *nn.Embedding `gguf:"token_types"`
PositionEmbedding *nn.Embedding `gguf:"position_embd"`
TokenEmbeddingNorm *nn.LayerNorm `gguf:"token_embd_norm"`
Layers []EncoderLayer `gguf:"blk"`
Options
}
// Forward implements model.Model.
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenStates = hiddenStates.Add(ctx, m.TypeEmbedding.Weight.View(ctx, 0, m.hiddenSize))
hiddenStates = hiddenStates.Add(ctx, m.PositionEmbedding.Forward(ctx, ctx.Input().FromInts(batch.Positions, len(batch.Positions))))
hiddenStates = m.TokenEmbeddingNorm.Forward(ctx, hiddenStates, m.eps)
for _, layer := range m.Layers {
hiddenStates = layer.Forward(ctx, hiddenStates, &m.Options)
}
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
if m.normalize {
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
}
return hiddenStates, nil
}
type EncoderLayer struct {
*Attention
AttentionNorm *nn.LayerNorm `gguf:"attn_output_norm"`
*MLP
MLPNorm *nn.LayerNorm `gguf:"layer_output_norm"`
}
func (e *EncoderLayer) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
// Attention
residual := hiddenStates
hiddenStates = e.Attention.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
hiddenStates = e.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
// MLP
residual = hiddenStates
hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
hiddenStates = e.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
return hiddenStates
}
type Attention struct {
Query *nn.Linear `gguf:"attn_q"`
QueryNorm *nn.LayerNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
KeyNorm *nn.LayerNorm `gguf:"attn_k_norm"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (a *Attention) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
batchSize := hiddenStates.Dim(1)
query := a.Query.Forward(ctx, hiddenStates)
if a.QueryNorm != nil {
query = a.QueryNorm.Forward(ctx, query, opts.eps)
}
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
key := a.Key.Forward(ctx, hiddenStates)
if a.KeyNorm != nil {
key = a.KeyNorm.Forward(ctx, key, opts.eps)
}
key = key.Reshape(ctx, opts.headDim(), cmp.Or(opts.numKVHeads, opts.numHeads), batchSize)
value := a.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, opts.headDim(), cmp.Or(opts.numKVHeads, opts.numHeads), batchSize)
attention := nn.Attention(ctx, query, key, value, 1/math.Sqrt(float64(opts.headDim())), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return a.Output.Forward(ctx, attention)
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (m *MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
return m.Down.Forward(ctx, m.Up.Forward(ctx, hiddenStates).GELU(ctx))
}
type Options struct {
hiddenSize,
numHeads,
numKVHeads,
keyLength,
valueLength int
poolingType pooling.Type
eps float32
normalize bool
}
func (o Options) headDim() int {
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}
func New(c fs.Config) (model.Model, error) {
var processor model.TextProcessor
switch c.String("tokenizer.ggml.model", "bert") {
case "bert":
processor = model.NewWordPiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.cls_token_id"),
c.Uint("tokenizer.ggml.bos_token_id"),
)),
},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", true),
EOS: []int32{
int32(cmp.Or(
c.Uint("tokenizer.ggml.separator_token_id"),
//nolint:misspell
// NOTE: "seperator_token_id" is a typo in model metadata but we need to
// support it for compatibility.
c.Uint("tokenizer.ggml.seperator_token_id"),
c.Uint("tokenizer.ggml.eos_token_id"),
)),
},
},
)
default:
return nil, model.ErrUnsupportedTokenizer
}
return &Model{
TextProcessor: processor,
Layers: make([]EncoderLayer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_epsilon"),
poolingType: pooling.Type(c.Uint("pooling_type")),
normalize: c.Bool("normalize_embeddings", true),
},
}, nil
}
func init() {
model.Register("bert", New)
model.Register("bert_embed", New)
}

View File

@@ -0,0 +1,326 @@
package deepseek2
// uses deepseek 2 architecture but written based on deepseek 3 model
import (
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Options struct {
numExpertsUsed int
numExperts int
normTopKProb bool
routedScalingFactor float32
kvLoraRank,
qkNopeHeadDim,
qkRopeHeadDim,
kqNopeHeadDim,
qkHeadDim int
qLoraRank int
vHeadDim int
hiddenSize,
numHeads,
numKVHeads,
keyLength,
valueLength,
originalContextLength int
eps,
ropeBase,
ropeScale float32
kqScale float64
}
func (o Options) RoPEOptions() []func(*rope.Options) {
attnFactor := float32(1.0 / (1.0 + 0.1*math.Log(float64(o.ropeScale))))
return []func(*rope.Options){
rope.WithOriginalContextLength(o.originalContextLength),
rope.WithExtrapolationFactor(1.),
rope.WithAttentionFactor(attnFactor),
}
}
type Attention struct {
Q *nn.Linear `gguf:"attn_q"`
QA *nn.Linear `gguf:"attn_q_a"`
QANorm *nn.RMSNorm `gguf:"attn_q_a_norm"`
QB *nn.Linear `gguf:"attn_q_b"`
KVA *nn.Linear `gguf:"attn_kv_a_mqa"`
KVANorm *nn.RMSNorm `gguf:"attn_kv_a_norm"`
KVB *nn.Linear `gguf:"attn_kv_b"`
Output *nn.Linear `gguf:"attn_out,alt:attn_output"`
}
func (attn *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
seqLength := hiddenStates.Dim(1)
var query ml.Tensor
if opts.qLoraRank == 0 { // nil {
query = attn.Q.Forward(ctx, hiddenStates)
} else {
query = attn.QA.Forward(ctx, hiddenStates)
query = attn.QANorm.Forward(ctx, query, opts.eps)
query = attn.QB.Forward(ctx, query)
}
query = query.Reshape(ctx, query.Dim(0)/opts.numHeads, opts.numHeads, seqLength)
qPass := query.View(ctx, 0,
opts.qkNopeHeadDim, query.Stride(1),
query.Dim(1), query.Stride(2),
query.Dim(2))
qRot := query.View(ctx, opts.qkNopeHeadDim*query.Stride(0),
opts.qkRopeHeadDim, query.Stride(1),
query.Dim(1), query.Stride(2),
query.Dim(2))
compressedKV := attn.KVA.Forward(ctx, hiddenStates)
kPass := compressedKV.View(ctx, 0, opts.kvLoraRank, compressedKV.Stride(1), compressedKV.Dim(1))
kRot := compressedKV.View(ctx, opts.kvLoraRank*compressedKV.Stride(0),
opts.qkRopeHeadDim, compressedKV.Stride(1),
1, compressedKV.Stride(1),
compressedKV.Dim(1))
kPass = attn.KVANorm.Forward(ctx, kPass, opts.eps)
kPass = attn.KVB.Forward(ctx, kPass)
kv := kPass.Reshape(ctx, kPass.Dim(0)/opts.numKVHeads, opts.numKVHeads, seqLength)
kPass = kv.View(ctx, 0, opts.kqNopeHeadDim, kv.Stride(1), kv.Dim(1), kv.Stride(2), kv.Dim(2))
value := kv.View(ctx, opts.kqNopeHeadDim*kv.Stride(0),
opts.vHeadDim, kv.Stride(1),
kv.Dim(1), kv.Stride(2),
kv.Dim(2)).Contiguous(ctx)
qRot = fast.RoPE(ctx, qRot, positions, opts.qkRopeHeadDim, opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
kRot = fast.RoPE(ctx, kRot, positions, opts.qkRopeHeadDim, opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
kRot = kRot.Repeat(ctx, 1, qPass.Dim(1))
query = qRot.Concat(ctx, qPass, 0)
key := kRot.Concat(ctx, kPass, 0)
attention := nn.Attention(ctx, query, key, value, opts.kqScale, cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), seqLength)
return attn.Output.Forward(ctx, attention)
}
type MLP interface {
Forward(ml.Context, ml.Tensor, *Options) ml.Tensor
}
type sparse struct {
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.Linear `gguf:"ffn_gate_exps"`
Up *nn.Linear `gguf:"ffn_up_exps"`
Down *nn.Linear `gguf:"ffn_down_exps"`
SharedExpert *dense `gguf:",suf:_shexp"`
ExpProbsBias ml.Tensor `gguf:"exp_probs_b.bias,alt:exp_probs_b"`
}
func (moe *sparse) Moe(ctx ml.Context, hiddenStates, topKIndices, topKWeights ml.Tensor, opts *Options) ml.Tensor {
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
upStates := moe.Up.Weight.MulmatID(ctx, hiddenStates, topKIndices)
hiddenStates = moe.Gate.Weight.MulmatID(ctx, hiddenStates, topKIndices)
hiddenStates = hiddenStates.SILU(ctx, upStates)
experts := moe.Down.Weight.MulmatID(ctx, hiddenStates, topKIndices)
experts = experts.Mul(ctx, topKWeights)
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
}
return nextStates
}
func (moe *sparse) topKIndices(ctx ml.Context, scores ml.Tensor, opts *Options) ml.Tensor {
if moe.ExpProbsBias != nil {
scores = scores.Add(ctx, moe.ExpProbsBias)
}
topKIndices := scores.TopK(ctx, opts.numExpertsUsed)
return topKIndices
}
func (moe *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
residuals := hiddenStates
routerLogits := moe.Router.Forward(ctx, hiddenStates)
scores := routerLogits.Sigmoid(ctx)
topKIndices := moe.topKIndices(ctx, scores, opts)
topKWeights := scores.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, topKIndices)
if opts.normTopKProb {
topKWeights = topKWeights.Reshape(ctx, opts.numExpertsUsed, hiddenStates.Dim(1))
topKWeights = topKWeights.Div(ctx, topKWeights.SumRows(ctx))
topKWeights = topKWeights.Reshape(ctx, 1, opts.numExpertsUsed, hiddenStates.Dim(1))
}
topKWeights = topKWeights.Scale(ctx, float64(opts.routedScalingFactor))
hiddenStates = moe.Moe(ctx, hiddenStates, topKIndices, topKWeights, opts)
sharedExpertResult := moe.SharedExpert.Forward(ctx, residuals, opts)
hiddenStates = hiddenStates.Add(ctx, sharedExpertResult)
return hiddenStates
}
type dense struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
Attention *Attention
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP MLP
}
func (t *Layer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
residual := hiddenStates
hiddenStates = t.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = t.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
if outputs != nil {
hiddenStates = hiddenStates.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = t.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = t.MLP.Forward(ctx, hiddenStates, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
return hiddenStates
}
type Model struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*Options
}
func New(c fs.Config) (model.Model, error) {
layers := make([]Layer, c.Uint("block_count"))
firstDenseLayerIndex := int(c.Uint("leading_dense_block_count"))
for i := range layers {
if i < firstDenseLayerIndex {
layers[i].MLP = &dense{}
} else {
layers[i].MLP = &sparse{}
}
}
mScale := float32(1.0 + float64(c.Float("rope.scaling.yarn_log_multiplier"))*math.Log(float64(c.Float("rope.scaling.factor"))))
kqScale := float64(mScale) * float64(mScale) / math.Sqrt(float64(c.Uint("attention.key_length")))
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
// Split regex into multiple parts (according to DeepSeek3's regex)
"\\p{N}{1,3}",
`[一-龥぀-ゟ゠-ヿ]+`,
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+",
),
Layers: layers,
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("expert_weights_norm", true),
qLoraRank: int(c.Uint("attention.q_lora_rank")), //&qLoraRankVal,
kvLoraRank: int(c.Uint("attention.kv_lora_rank")),
qkHeadDim: int(c.Uint("attention.key_length")),
vHeadDim: int(c.Uint("attention.value_length")),
qkRopeHeadDim: int(c.Uint("rope.dimension_count")),
qkNopeHeadDim: int(c.Uint("attention.key_length")) - int(c.Uint("rope.dimension_count")),
kqNopeHeadDim: int(c.Uint("attention.key_length")) - int(c.Uint("rope.dimension_count")),
routedScalingFactor: c.Float("expert_weights_scale"),
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
kqScale: kqScale,
},
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}
func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.qkRopeHeadDim, m.ropeBase, 1./m.ropeScale, m.RoPEOptions()...), nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = batch.Outputs
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
}
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
}
func init() {
model.Register("deepseek2", New)
}

View File

@@ -24,7 +24,7 @@ type Options struct {
type Model struct {
model.Base
model.SentencePieceModel
model.SentencePiece
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
@@ -40,7 +40,7 @@ const (
func New(c fs.Config) (model.Model, error) {
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@@ -63,7 +63,7 @@ func New(c fs.Config) (model.Model, error) {
attnValLen: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base", 10000.0),
ropeScale: c.Float("rope.freq_scale", 1.0),
ropeScale: c.Float("rope.scaling.factor", 1.0),
attnLogitSoftcap: c.Float("attn_logit_softcapping"),
finalLogitSoftcap: c.Float("final_logit_softcapping"),
},
@@ -88,7 +88,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
@@ -98,7 +98,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
@@ -128,7 +128,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.Options.attnKeyLen, m.Options.ropeBase, m.Options.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.Options.attnKeyLen, m.Options.ropeBase, 1/m.Options.ropeScale, rope.WithTypeNeoX()), nil
}
type MLP struct {
@@ -138,7 +138,7 @@ type MLP struct {
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -175,8 +175,7 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Ten
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize)))
@@ -193,7 +192,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
lastLayerOutputs = batch.Outputs
}
hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)

View File

@@ -0,0 +1,56 @@
package gemma3
import (
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type embedModel struct {
model.Base
model.SentencePiece
*TextModel
poolingType pooling.Type
Dense [2]*nn.Linear `gguf:"dense"`
}
func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
for _, dense := range m.Dense {
hiddenStates = dense.Forward(ctx, hiddenStates)
}
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
return hiddenStates, nil
}
func newEmbedModel(c fs.Config) (model.Model, error) {
m := &embedModel{
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{
int32(c.Uint("tokenizer.ggml.eos_token_id")),
int32(c.Uint("tokenizer.ggml.eot_token_id", 106)),
},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
TextModel: newTextModel(c),
poolingType: pooling.Type(c.Uint("pooling_type", 0)),
}
return m, nil
}

View File

@@ -16,9 +16,9 @@ import (
type Model struct {
model.Base
model.SentencePieceModel
model.SentencePiece
*VisionModel `gguf:"v,vision"`
*VisionModel `gguf:"v"`
*TextModel
*MultiModalProjector `gguf:"mm"`
@@ -55,7 +55,7 @@ func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, i
func New(c fs.Config) (model.Model, error) {
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@@ -101,7 +101,7 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
return nil, err
}
pixelValues := ctx.Input().FromFloatSlice(f32s,
pixelValues := ctx.Input().FromFloats(f32s,
m.ImageProcessor.imageSize,
m.ImageProcessor.imageSize,
m.ImageProcessor.numChannels,
@@ -112,8 +112,8 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
return []input.Multimodal{{Tensor: visionOutputs}}, nil
}
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
var result []*input.Input
for _, inp := range inputs {
if len(inp.Multimodal) == 0 {
@@ -122,17 +122,17 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
inputMultimodal := inp.Multimodal[0].Tensor
result = append(result,
input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
input.Input{Token: 255999}, // "<start_of_image>""
input.Input{Multimodal: []input.Multimodal{{Tensor: inputMultimodal}}, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
&input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
&input.Input{Token: 255999}, // "<start_of_image>""
&input.Input{Multimodal: []input.Multimodal{{Tensor: inputMultimodal}}, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
)
// add image token placeholders
result = append(result, slices.Repeat([]input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
result = append(result, slices.Repeat([]*input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
result = append(result,
input.Input{Token: 256000}, // <end_of_image>
input.Input{Token: 108}, // "\n\n"
&input.Input{Token: 256000}, // <end_of_image>
&input.Input{Token: 108}, // "\n\n"
)
}
}
@@ -141,12 +141,11 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
return m.Output.Forward(ctx, hiddenStates), nil
}
func init() {
model.Register("gemma3", New)
model.Register("gemma3_embed", newEmbedModel)
}

View File

@@ -53,7 +53,10 @@ func newTextModel(c fs.Config) *TextModel {
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
ropeLocalBase: c.Float("rope.local.freq_base", 10000.0),
ropeGlobalBase: c.Float("rope.global.freq_base", 1000000.0),
ropeScale: c.Float("rope.freq_scale", 1.0),
ropeScale: 1,
// NOTE: the rope.scaling.factor is set incorrectly in the official QAT weights
// (8 instead of 1)
// ropeScale: c.Float("rope.scaling.factor", 1.0),
},
}
@@ -84,7 +87,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = sa.QueryNorm.Forward(ctx, q, opts.eps)
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, ropeBase, opts.ropeScale, rope.WithTypeNeoX())
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
@@ -95,7 +98,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = sa.KeyNorm.Forward(ctx, k, opts.eps)
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, ropeBase, opts.ropeScale, rope.WithTypeNeoX())
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
@@ -113,7 +116,7 @@ func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.T
ropeBase = m.TextConfig.ropeGlobalBase
}
return fast.RoPE(ctx, key, shift, m.TextConfig.attnKeyLen, ropeBase, m.TextConfig.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.TextConfig.attnKeyLen, ropeBase, 1/m.TextConfig.ropeScale, rope.WithTypeNeoX()), nil
}
type TextMLP struct {
@@ -123,7 +126,7 @@ type TextMLP struct {
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextConfig) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -159,8 +162,10 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
return hiddenState.Add(ctx, residual)
}
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cache) ml.Tensor {
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextConfig.hiddenSize)))
// set image embeddings
@@ -177,26 +182,28 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
for i, layer := range m.Layers {
// gemma alternates between the sliding window (local) and causal (global)
// kv cache every 6 layers
cacheType := cacheTypeSWA
if (i+1)%gemmaGlobalCacheCount == 0 {
cacheType = cacheTypeCausal
}
cache.SetLayer(i)
wc := cache.(*kvcache.WrapperCache)
wc.SetLayerType(cacheType)
if cache != nil {
cacheType := cacheTypeSWA
if (i+1)%gemmaGlobalCacheCount == 0 {
cacheType = cacheTypeCausal
}
cache.SetLayer(i)
wc := cache.(*kvcache.WrapperCache)
wc.SetLayerType(cacheType)
if causal, ok := wc.UnderlyingCache().(*kvcache.Causal); ok {
causal.SetCausal(ctx, kvcache.CausalOptions{Except: except})
if causal, ok := wc.UnderlyingCache().(*kvcache.Causal); ok {
causal.SetCausal(ctx, kvcache.CausalOptions{Except: except})
}
}
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
lastLayerOutputs = batch.Outputs
}
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextConfig)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return m.Output.Forward(ctx, hiddenState)
return hiddenState
}

View File

@@ -10,7 +10,7 @@ import (
type Model struct {
model.Base
model.SentencePieceModel
model.SentencePiece
*TextModel
}
@@ -23,7 +23,7 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
func New(c fs.Config) (model.Model, error) {
m := Model{
TextModel: newTextModel(c),
SentencePieceModel: model.NewSentencePieceModel(
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),

View File

@@ -29,9 +29,9 @@ type TextModel struct {
}
func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cache) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
// Create a tensor of a single float32 value of 1.0 to use for altup correction
one := ctx.Input().FromFloatSlice([]float32{1.0}, 1)
one := ctx.Input().FromFloats([]float32{1.0}, 1)
inputs := m.TokenEmbedding.Forward(ctx, batch.Inputs, math.Sqrt(float64(m.hiddenSize)))
inputsPerLayer := m.PerLayerProjector.Forward(ctx, batch, inputs, &m.TextOptions)
@@ -65,7 +65,7 @@ func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cac
cache.(*kvcache.WrapperCache).SetLayerType(layerType)
// inputPerLayer = inputsPerLayer[:, i, :]
inputPerLayer := inputsPerLayer.View(ctx, i*inputsPerLayer.Stride(1), inputsPerLayer.Dim(0), inputsPerLayer.Stride(2), inputsPerLayer.Dim(2))
inputPerLayer := inputsPerLayer.View(ctx, i*inputsPerLayer.Stride(1), inputsPerLayer.Dim(0), inputsPerLayer.Stride(2), inputsPerLayer.Dim(2)).Contiguous(ctx)
hiddenStates = layer.Forward(ctx, hiddenStates, inputPerLayer, positions, one, cache, i >= firstSharedKeyValue, ropeBase, float64(m.activationSparsityScale[i]), &m.TextOptions)
}
@@ -83,7 +83,7 @@ func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cac
hiddenStates = hiddenStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx).Mean(ctx)
hiddenStates = hiddenStates.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
hiddenStates = hiddenStates.Rows(ctx, ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs)))
hiddenStates = hiddenStates.Rows(ctx, batch.Outputs)
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
@@ -95,7 +95,7 @@ func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.T
ropeBase = m.ropeBaseLocal
}
return fast.RoPE(ctx, key, shift, m.headDim(), ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.headDim(), ropeBase, 1./m.ropeScale, rope.WithTypeNeoX()), nil
}
type TextScaledWordEmbedding struct {
@@ -170,8 +170,7 @@ func (d TextLayer) Forward(ctx ml.Context, hiddenStates, perLayerInput, position
}
active = d.PerLayerInputGate.Forward(ctx, active)
active = active.GELU(ctx)
active = active.Mul(ctx, perLayerInput)
active = active.GELU(ctx, perLayerInput)
active = d.PerLayerProjection.Forward(ctx, active)
active = d.PostPerLayerNorm.Forward(ctx, active, opts.eps)
@@ -203,10 +202,9 @@ func (a AltUp) Predict(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions
coefficients := a.PredictionCoefficient.Forward(ctx, modalities)
coefficients = coefficients.Reshape(ctx, opts.altupInputs, opts.altupInputs, coefficients.Dim(1), coefficients.Dim(2))
hiddenStates = hiddenStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
predictions := coefficients.Mulmat(ctx, hiddenStates)
predictions = predictions.Add(ctx, hiddenStates)
return predictions.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
predictions := coefficients.Mulmat(ctx, hiddenStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx))
predictions = predictions.Permute(ctx, 2, 0, 1, 3).Contiguous(ctx)
return predictions.Add(ctx, hiddenStates)
}
func (a AltUp) Correct(ctx ml.Context, predictions, activated, one ml.Tensor, opts *TextOptions) ml.Tensor {
@@ -258,14 +256,14 @@ func (attn TextAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Ten
query := attn.Query.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
query = attn.QueryNorm.Forward(ctx, query, opts.eps)
query = fast.RoPE(ctx, query, positions, opts.headDim(), ropeBase, opts.ropeScale, rope.WithTypeNeoX())
query = fast.RoPE(ctx, query, positions, opts.headDim(), ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
var key, value ml.Tensor
if !sharedKV {
key = attn.Key.Forward(ctx, hiddenStates)
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
key = attn.KeyNorm.Forward(ctx, key, opts.eps)
key = fast.RoPE(ctx, key, positions, opts.headDim(), ropeBase, opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, opts.headDim(), ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
value = attn.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
@@ -293,7 +291,7 @@ func (mlp TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, activationSpa
hiddenStates = hiddenStates.Sub(ctx, cutoff).RELU(ctx)
}
hiddenStates = hiddenStates.GELU(ctx).Mul(ctx, upStates)
hiddenStates = hiddenStates.GELU(ctx, upStates)
hiddenStates = mlp.Down.Forward(ctx, hiddenStates)
return hiddenStates
}
@@ -351,7 +349,7 @@ func newTextModel(c fs.Config) *TextModel {
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
ropeBase: c.Float("rope.freq_base", 1_000_000),
ropeBaseLocal: c.Float("rope.freq_base_local", 10_000),
ropeScale: c.Float("rope.freq_scale", 1.0),
ropeScale: c.Float("rope.scaling.factor", 1.0),
slidingWindowPattern: c.Bools("attention.sliding_window_pattern"),
activationSparsityScale: c.Floats("activation_sparsity_scale"),

View File

@@ -1,3 +1,25 @@
// Package gptoss implements OpenAI's GPT-OSS (OpenAI MOE) language model family.
//
// GPT-OSS Architecture:
// - OpenAI's open-weight models released under Apache 2.0 license (2024-2025)
// - Two variants: gpt-oss-120b (117B params, 5.1B active) and gpt-oss-20b (21B params, 3.6B active)
// - Mixture-of-Experts (MoE) with sparse activation for efficient inference
// - Alternating attention: Dense layers (odd) and Sliding Window layers (even)
// - Grouped Multi-Query Attention with group size of 8
// - RoPE positional encoding supporting up to 128k context length
// - MXFP4 quantization (4.25 bits per param) enabling 120B model on 80GB GPU
//
// CPU Requirements:
// - Minimum: SSE4.2 (for basic MXFP4 dequantization operations)
// - Recommended: AVX2 + F16C (for vectorized MXFP4 operations)
// - Optional: AVX_VNNI (Alderlake+) provides ~10-20% speedup for INT8 dot products
// Note: AVX_VNNI requires GCC 11+, not available with CUDA 11.4 + GCC 10 builds
// - This code runs on any modern x86_64 CPU (Haswell 2013+), older CPUs may be slower
//
// Memory Layout:
// - MXFP4: 4-bit mantissa + shared 8-bit exponent per 32-element block
// - Storage: 17 bytes per 32 elements (1 byte scale + 16 bytes values)
// - Dequantization happens on-the-fly during inference
package gptoss
import (
@@ -15,6 +37,9 @@ import (
"github.com/ollama/ollama/model/input"
)
// Transformer is the main GPT-OSS model structure implementing the MoE architecture.
// It contains token embeddings, multiple transformer blocks with alternating attention patterns,
// output normalization, and the final output projection layer.
type Transformer struct {
model.Base
model.BytePairEncoding
@@ -27,27 +52,41 @@ type Transformer struct {
Options
}
// Forward implements model.Model.
// Forward implements model.Model and performs a forward pass through the entire model.
// This processes input tokens through all transformer layers to generate output logits.
//
// The alternating attention pattern (odd layers = dense, even layers = sliding window)
// provides a balance between global context understanding and computational efficiency.
//
// Processing flow:
// 1. Convert input token IDs to embeddings
// 2. Pass through all transformer blocks (each with attention + MoE MLP)
// 3. Apply output normalization
// 4. Project to vocabulary size for next token prediction
func (m *Transformer) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
// Convert token IDs to dense vector embeddings
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
one := ctx.Input().FromFloatSlice([]float32{1}, 1)
// Process through all transformer blocks sequentially
for i, block := range m.TransformerBlocks {
m.Cache.SetLayer(i)
if c, ok := m.Cache.(*kvcache.WrapperCache); ok {
// Even layers are sliding window attention.
// Even-indexed layers (0, 2, 4, ...) use sliding window attention (local context)
// Odd-indexed layers (1, 3, 5, ...) use dense attention (global context)
// This alternating pattern reduces memory while maintaining model quality
c.SetLayerType(i % 2)
}
var outputs ml.Tensor
if len(batch.Outputs) > 0 && i == len(m.TransformerBlocks)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
if i == len(m.TransformerBlocks)-1 {
outputs = batch.Outputs
}
hiddenStates = block.Forward(ctx, hiddenStates, positions, outputs, one, m.Cache, &m.Options)
hiddenStates = block.Forward(ctx, hiddenStates, positions, outputs, m.Cache, &m.Options)
}
// Apply final RMS normalization before output projection
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
}
@@ -90,23 +129,27 @@ type TransformerBlock struct {
MLP *MLPBlock
}
func (d *TransformerBlock) Forward(ctx ml.Context, hiddenStates, positions, outputs, one ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
func (d *TransformerBlock) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
if outputs != nil {
hiddenStates = hiddenStates.Rows(ctx, outputs)
}
hiddenStates = d.MLP.Forward(ctx, hiddenStates, one, opts)
hiddenStates = d.MLP.Forward(ctx, hiddenStates, opts)
return hiddenStates
}
type AttentionBlock struct {
Norm *nn.RMSNorm `gguf:"attn_norm"`
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_out"`
Sinks ml.Tensor `gguf:"attn_sinks"`
Norm *nn.RMSNorm `gguf:"attn_norm"`
QKV *nn.Linear `gguf:"attn_qkv"`
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_out,alt:attn_output"`
Sinks ml.Tensor `gguf:"attn_sinks,alt:attn_sinks.weight"`
}
func (attn *AttentionBlock) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
@@ -115,100 +158,160 @@ func (attn *AttentionBlock) Forward(ctx ml.Context, hiddenStates, positions ml.T
residual := hiddenStates
hiddenStates = attn.Norm.Forward(ctx, hiddenStates, opts.eps)
// Compute separate Q, K, V projections
query := attn.Query.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
var query, key, value ml.Tensor
if attn.QKV != nil {
qkv := attn.QKV.Forward(ctx, hiddenStates)
key := attn.Key.Forward(ctx, hiddenStates)
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
// query = qkv[..., : num_attention_heads * head_dim].reshape(batch_size, num_attention_heads, head_dim)
query = qkv.View(ctx,
0,
opts.headDim(), qkv.Stride(0)*opts.headDim(),
opts.numHeads, qkv.Stride(1),
batchSize,
)
// key = qkv[..., num_attention_heads * head_dim:(num_attention_heads + num_key_value_heads) * head_dim].reshape(batch_size, num_key_value_heads, head_dim)
key = qkv.View(ctx,
qkv.Stride(0)*opts.headDim()*opts.numHeads,
opts.headDim(), qkv.Stride(0)*opts.headDim(),
opts.numKVHeads, qkv.Stride(1),
batchSize,
)
// value = qkv[..., (num_attention_heads + num_key_value_heads) * head_dim:].reshape(batch_size, num_key_value_heads, head_dim)
value = qkv.View(ctx,
qkv.Stride(0)*opts.headDim()*(opts.numHeads+opts.numKVHeads),
opts.headDim(), qkv.Stride(0)*opts.headDim(),
opts.numKVHeads, qkv.Stride(1),
batchSize,
)
} else {
query = attn.Query.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
key = attn.Key.Forward(ctx, hiddenStates)
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
value = attn.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
}
query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
key = fast.RoPE(ctx, key, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
value := attn.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
cache.Put(ctx, key, value)
key, value, mask := cache.Get(ctx)
query = query.Permute(ctx, 0, 2, 1, 3)
key = key.Permute(ctx, 0, 2, 1, 3)
scores := key.MulmatFullPrec(ctx, query)
scores = scores.Scale(ctx, 1./math.Sqrt(float64(opts.headDim())))
scores = scores.Add(ctx, mask)
scores = scores.Concat(ctx, attn.Sinks.Reshape(ctx, 1, 1, opts.numHeads, 1).Repeat(ctx, 1, batchSize), 0)
scores = scores.Softmax(ctx)
scores = scores.Pad(ctx, -1, 0, 0, 0)
attention := value.Mulmat(ctx, scores)
attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
attention := nn.AttentionWithSinks(ctx, query, key, value, attn.Sinks, 1/math.Sqrt(float64(opts.headDim())), cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
return attn.Output.Forward(ctx, attention).Add(ctx, residual)
}
// MLPBlock implements the Mixture-of-Experts (MoE) feed-forward layer.
// This is the key to GPT-OSS's efficiency - it only activates a subset of experts per token.
//
// MoE Architecture:
// - Router network selects top-k experts for each token (typically k=2)
// - Only selected experts process the token (sparse activation)
// - Example: 120B model has 113B expert parameters but only activates ~5B per token
// - This provides large model capacity with smaller computational cost
//
// CPU Performance Notes:
// - Router: Small matrix multiply (no special CPU requirements)
// - Expert weights: Stored in MXFP4 format (dequantized on-the-fly)
// - MXFP4 dequantization benefits from AVX2 vectorization
// - AVX_VNNI (Alderlake+) provides 10-20% speedup but not required
type MLPBlock struct {
Norm *nn.RMSNorm `gguf:"ffn_norm"`
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
Norm *nn.RMSNorm `gguf:"ffn_norm,alt:post_attention_norm"`
Router *nn.Linear `gguf:"ffn_gate_inp"` // Selects which experts to use
GateUp *nn.LinearBatch `gguf:"ffn_gate_up_exps"` // Interleaved gate+up weights (memory efficient)
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"` // Gate projection (alternative layout)
Up *nn.LinearBatch `gguf:"ffn_up_exps"` // Up projection (alternative layout)
Down *nn.LinearBatch `gguf:"ffn_down_exps"` // Down projection (all experts)
}
func (mlp *MLPBlock) Forward(ctx ml.Context, hiddenStates, one ml.Tensor, opts *Options) ml.Tensor {
// Forward processes the input through the MoE layer with expert routing.
//
// Processing steps:
// 1. Normalize input
// 2. Router selects top-k experts based on input
// 3. Compute routing weights (softmax over selected experts)
// 4. Process input through selected experts only
// 5. Combine expert outputs weighted by routing scores
// 6. Add residual connection
//
// CPU Performance: The expert matrix multiplications use MXFP4 weights which are
// dequantized during computation. AVX2 CPUs (2013+) will vectorize this efficiently.
func (mlp *MLPBlock) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
residual := hiddenStates
hiddenStates = mlp.Norm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
// Router computes affinity scores for all experts
routingWeights := mlp.Router.Forward(ctx, hiddenStates)
// Select top-k experts with highest scores (sparse activation)
// Example: If 16 experts and k=2, only 2 experts process each token
selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed)
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, sequenceLength*batchSize).Rows(ctx, selectedExperts)
// Normalize routing weights so they sum to 1 (softmax over selected experts)
routingWeights = routingWeights.Reshape(ctx, opts.numExpertsUsed, sequenceLength*batchSize).Softmax(ctx)
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExpertsUsed, sequenceLength*batchSize)
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
// Compute gate and up separately instead of using fused GateUp
gateStates := mlp.Gate.Forward(ctx, hiddenStates, selectedExperts)
gateStates = gateStates.Clamp(ctx, float32(math.Inf(-1)), 7.0)
gateStates = gateStates.QuickGELU(ctx)
// Process through selected experts
var gate, up ml.Tensor
if mlp.GateUp != nil {
// Interleaved layout: gate and up weights are stored together for memory efficiency
hiddenStates = mlp.GateUp.Forward(ctx, hiddenStates, selectedExperts)
hiddenStates = hiddenStates.Reshape(ctx, 2, hiddenStates.Dim(0)/2, hiddenStates.Dim(1), hiddenStates.Dim(2))
upStates := mlp.Up.Forward(ctx, hiddenStates, selectedExperts)
upStates = upStates.Clamp(ctx, -7.0, 7.0)
dimStride := []int{hiddenStates.Dim(0) / 2, hiddenStates.Stride(1), hiddenStates.Dim(1), hiddenStates.Stride(2), hiddenStates.Dim(2), hiddenStates.Stride(3), hiddenStates.Dim(3)}
hiddenStates = gateStates.Mul(ctx, upStates.Add(ctx, one))
// hiddenStates is now [intermediate_size, num_experts_used, seq*batch]
// Split interleaved gate/up into separate tensors
gate = hiddenStates.View(ctx, 0, dimStride...)
gate = gate.Contiguous(ctx, gate.Dim(0)*gate.Dim(1), gate.Dim(2), gate.Dim(3))
up = hiddenStates.View(ctx, hiddenStates.Stride(0), dimStride...)
up = up.Contiguous(ctx, up.Dim(0)*up.Dim(1), up.Dim(2), up.Dim(3))
} else {
// Separate layout: gate and up weights stored independently
gate = mlp.Gate.Forward(ctx, hiddenStates, selectedExperts)
up = mlp.Up.Forward(ctx, hiddenStates, selectedExperts)
}
// Apply SwiGLU activation with alpha limiting for numerical stability
// SwiGLU: gate.silu() * up, where silu(x) = x * sigmoid(x)
// Alpha limit prevents gradient explosion during training
hiddenStates = gate.SILUAlphaLimit(ctx, up, 1.702, 7)
// Project back down to hidden dimension through each expert's down projection
experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
// Weight each expert's output by its routing score
experts = experts.Mul(ctx, routingWeights)
// Combine all expert outputs (weighted sum)
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
}
// Add residual connection for gradient flow
return nextStates.Add(ctx, residual)
}
// New creates a new GPT-OSS Transformer model from a GGUF configuration.
// This initializes all model components including:
// - Transformer blocks (attention + MoE MLP layers)
// - Byte-pair encoding tokenizer
// - Dual cache system (sliding window for even layers, causal for odd layers)
func New(c fs.Config) (model.Model, error) {
m := Transformer{
TransformerBlocks: make([]TransformerBlock, c.Uint("block_count")),
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer",
strings.Join([]string{
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
`\p{N}{1,3}`,
` ?[^\s\p{L}\p{N}]+[\r\n/]*`,
`\s*[\r\n]+`,
`\s+(?!\S)`,
`\s+`,
}, "|"),
),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
@@ -221,15 +324,25 @@ func New(c fs.Config) (model.Model, error) {
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
// GPT-4 tokenizer pattern: handles words, numbers, punctuation, and whitespace
strings.Join([]string{
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
`\p{N}{1,3}`,
` ?[^\s\p{L}\p{N}]+[\r\n/]*`,
`\s*[\r\n]+`,
`\s+(?!\S)`,
`\s+`,
}, "|"),
),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
numKVHeads: int(c.Uint("attention.head_count_kv")), // Grouped multi-query attention
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
numExperts: int(c.Uint("expert_count")), // Total number of experts per layer
numExpertsUsed: int(c.Uint("expert_used_count")), // Number of experts activated per token (k)
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1.),
@@ -237,14 +350,18 @@ func New(c fs.Config) (model.Model, error) {
},
}
// Create dual cache system:
// - Sliding window cache: For even layers (local attention with fixed window size)
// - Causal cache: For odd layers (full attention over all previous tokens)
// This hybrid approach balances memory usage with model quality
m.Cache = kvcache.NewWrapperCache(
kvcache.NewSWAMemCache(int32(c.Uint("attention.sliding_window")), 4096, m.Shift),
kvcache.NewCausalCache(m.Shift),
)
m.Cache.SetConfig(ml.CacheConfig{CachePadding: 32, PermutedV: true})
return &m, nil
}
func init() {
model.Register("gptoss", New)
model.Register("gpt-oss", New)
}

View File

@@ -2,7 +2,6 @@ package llama
import (
"cmp"
"fmt"
"math"
"github.com/ollama/ollama/fs"
@@ -23,51 +22,80 @@ type Options struct {
type Model struct {
model.Base
model.BytePairEncoding
model.TextProcessor
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*Options
Options
}
func New(c fs.Config) (model.Model, error) {
// This model currently only supports the gpt2 tokenizer
if c.String("tokenizer.ggml.model") == "llama" {
return nil, fmt.Errorf("unsupported tokenizer: llama")
if c.Uint("expert_count") > 0 {
// TODO: support mixtures of experts
return nil, model.ErrUnsupportedModel
}
// Best effort detection of library/deepseek-coder model(s) which are incompatible
if c.String("general.name") == "deepseek-ai" {
return nil, fmt.Errorf("unsupported model: %s", c.String("general.name"))
}
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
var processor model.TextProcessor
vocabulary := model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
Layers: make([]Layer, c.Uint("block_count")),
Options: &Options{
}
switch c.String("tokenizer.ggml.model") {
case "gpt2":
var pretokenizers []string
switch c.String("tokenizer.ggml.pre") {
case "default":
// no-op use the default bpe pretokenizer
case "qwen2":
pretokenizers = []string{
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
}
case "refact":
pretokenizers = []string{
`\p{N}`,
`'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+`,
}
case "tekken":
pretokenizers = []string{
"[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
}
default:
// use a llama-style pretokenizer
pretokenizers = []string{
"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
}
}
processor = model.NewBytePairEncoding(&vocabulary, pretokenizers...)
case "llama":
processor = model.NewSentencePiece(&vocabulary)
default:
return nil, model.ErrUnsupportedTokenizer
}
m := Model{
TextProcessor: processor,
Layers: make([]Layer, c.Uint("block_count")),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeBase: c.Float("rope.freq_base", 1e5),
ropeScale: c.Float("rope.scaling.factor", 1),
},
}
@@ -98,8 +126,8 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tenso
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
@@ -108,7 +136,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.Tenso
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(m.Layers[layer].SelfAttention.RopeFactors)), nil
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithFactors(m.Layers[layer].SelfAttention.RopeFactors)), nil
}
type MLP struct {
@@ -118,7 +146,7 @@ type MLP struct {
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -151,7 +179,7 @@ func (l *Layer) Forward(ctx ml.Context, hiddenState, positions, outputs ml.Tenso
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
@@ -160,10 +188,10 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
outputs = batch.Outputs
}
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, m.Options)
hiddenState = layer.Forward(ctx, hiddenState, positions, outputs, m.Cache, &m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)

View File

@@ -18,7 +18,7 @@ type Model struct {
model.BytePairEncoding
ImageProcessor
*VisionModel `gguf:"v,vision"`
*VisionModel `gguf:"v"`
*Projector `gguf:"mm"`
*TextModel
}
@@ -34,8 +34,6 @@ func (p *Projector) Forward(ctx ml.Context, visionOutputs ml.Tensor) ml.Tensor {
func New(c fs.Config) (model.Model, error) {
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer",
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
@@ -48,6 +46,7 @@ func New(c fs.Config) (model.Model, error) {
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
ImageProcessor: newImageProcessor(c),
VisionModel: newVisionModel(c),
@@ -77,7 +76,7 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
return nil, err
}
tilesLocal := ctx.Input().FromFloatSlice(pixelsLocal, size.X, size.Y, m.numChannels)
tilesLocal := ctx.Input().FromFloats(pixelsLocal, size.X, size.Y, m.numChannels)
ratioW, ratioH := size.X/m.imageSize, size.Y/m.imageSize
@@ -88,7 +87,7 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
pixelValues := tilesLocal
if len(pixelsGlobal) > 0 {
tilesGlobal := ctx.Input().FromFloatSlice(pixelsGlobal, m.imageSize, m.imageSize, m.numChannels)
tilesGlobal := ctx.Input().FromFloats(pixelsGlobal, m.imageSize, m.imageSize, m.numChannels)
pixelValues = pixelValues.Concat(ctx, tilesGlobal, 3)
}
@@ -134,16 +133,16 @@ type separator struct {
y bool
}
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
var result []*input.Input
for _, inp := range inputs {
if len(inp.Multimodal) == 0 {
result = append(result, inp)
continue
}
var imageInputs []input.Input
imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_start|>
var imageInputs []*input.Input
imageInputs = append(imageInputs, &input.Input{Token: 200080}) // <|image_start|>
for i, mm := range inp.Multimodal {
patchesPerChunk := mm.Tensor.Dim(1)
@@ -151,20 +150,20 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
if i < len(inp.Multimodal)-1 {
separator := mm.Data.(*separator)
imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: []input.Multimodal{{Tensor: mm.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
imageInputs = append(imageInputs, &input.Input{Token: 200092, Multimodal: []input.Multimodal{{Tensor: mm.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
imageInputs = append(imageInputs, slices.Repeat([]*input.Input{{Token: 200092}}, patchesPerChunk-1)...)
if separator.x {
imageInputs = append(imageInputs, input.Input{Token: 200084}) // <|tile_x_separator|>
imageInputs = append(imageInputs, &input.Input{Token: 200084}) // <|tile_x_separator|>
}
if separator.y {
imageInputs = append(imageInputs, input.Input{Token: 200085}) // <|tile_y_separator|>
imageInputs = append(imageInputs, &input.Input{Token: 200085}) // <|tile_y_separator|>
}
} else {
imageInputs = append(imageInputs, input.Input{Token: 200090}) // <|image|>
imageInputs = append(imageInputs, input.Input{Token: 200092, Multimodal: []input.Multimodal{{Tensor: mm.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
imageInputs = append(imageInputs, slices.Repeat([]input.Input{{Token: 200092}}, patchesPerChunk-1)...)
imageInputs = append(imageInputs, input.Input{Token: 200080}) // <|image_end|>
imageInputs = append(imageInputs, &input.Input{Token: 200090}) // <|image|>
imageInputs = append(imageInputs, &input.Input{Token: 200092, Multimodal: []input.Multimodal{{Tensor: mm.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: patchesPerChunk}) // <|patch|>
imageInputs = append(imageInputs, slices.Repeat([]*input.Input{{Token: 200092}}, patchesPerChunk-1)...)
imageInputs = append(imageInputs, &input.Input{Token: 200080}) // <|image_end|>
}
}
@@ -175,10 +174,8 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache), nil
}
func init() {

View File

@@ -33,8 +33,8 @@ func (sa *TextAttention) Forward(ctx ml.Context, hiddenStates, positions, attent
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
if useRope {
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
}
if opts.useQKNorm {
@@ -58,14 +58,14 @@ type TextMLP struct {
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type TextExperts struct {
Gate *nn.Linear `gguf:"ffn_gate_exps"`
Up *nn.Linear `gguf:"ffn_up_exps"`
Down *nn.Linear `gguf:"ffn_down_exps"`
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
}
func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tensor, opts *TextOptions) ml.Tensor {
@@ -76,9 +76,9 @@ func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tens
hiddenStates = hiddenStates.Repeat(ctx, 1, opts.numExpertsUsed)
hiddenStates = hiddenStates.Mul(ctx, scores)
upStates := e.Up.Weight.MulmatID(ctx, hiddenStates, experts)
gateStates := e.Gate.Weight.MulmatID(ctx, hiddenStates, experts)
downStates := e.Down.Weight.MulmatID(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts)
upStates := e.Up.Forward(ctx, hiddenStates, experts)
gateStates := e.Gate.Forward(ctx, hiddenStates, experts)
downStates := e.Down.Forward(ctx, upStates.Mul(ctx, gateStates.SILU(ctx)), experts)
nextStates := downStates.View(ctx, 0, hiddenStates.Dim(0), downStates.Stride(2), hiddenStates.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
@@ -88,22 +88,10 @@ func (e *TextExperts) Forward(ctx ml.Context, hiddenStates, routerLogits ml.Tens
return nextStates
}
// TextSharedExpert is TextMLP with different tensor names
type TextSharedExpert struct {
Gate *nn.Linear `gguf:"ffn_gate_shexp"`
Up *nn.Linear `gguf:"ffn_up_shexp"`
Down *nn.Linear `gguf:"ffn_down_shexp"`
}
func (mlp *TextSharedExpert) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type TextMOE struct {
Router *nn.Linear `gguf:"ffn_gate_inp"`
Experts *TextExperts
SharedExpert *TextSharedExpert
SharedExpert *TextMLP `gguf:",suf:_shexp"`
}
func (moe *TextMOE) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
@@ -196,7 +184,7 @@ func newTextModel(c fs.Config) *TextModel {
numExpertsUsed: int(c.Uint("expert_used_count")),
ropeDim: int(c.Uint("rope.dimension_count")),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeScale: c.Float("rope.scaling.factor", 1),
eps: c.Float("attention.layer_norm_rms_epsilon"),
interleaveLayerStep: int(c.Uint("interleave_moe_layer_step", 1)),
noRopeInterval: int(c.Uint("no_rope_interval", 4)),
@@ -223,7 +211,7 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
scales[i] = float32(math.Log(math.Floor(((float64(p)+1.0)/float64(m.attentionFloorScale))+1.0))*m.attentionScale + 1.0)
}
attentionScales = ctx.Input().FromFloatSlice(scales, 1, 1, len(scales))
attentionScales = ctx.Input().FromFloats(scales, 1, 1, len(scales))
}
for i, layer := range m.Layers {
@@ -248,5 +236,5 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(m.Layers[layer].Attention.RopeFactors)), nil
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithFactors(m.Layers[layer].Attention.RopeFactors)), nil
}

View File

@@ -245,7 +245,7 @@ func (m *VisionModel) rotaryEmbedding(ctx ml.Context) (ml.Tensor, ml.Tensor) {
}
}
ropeFreqs := ctx.Input().FromFloatSlice(freqs, freqDim/2, numPatches, 2)
ropeFreqs := ctx.Input().FromFloats(freqs, freqDim/2, numPatches, 2)
ropeFreqs = ropeFreqs.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
ropeFreqs = ropeFreqs.Reshape(ctx, freqDim, 1, numPatches)

View File

@@ -73,7 +73,7 @@ func (p ImageProcessor) bestResolution(img image.Point, possibleResolutions []im
for i, res := range possibleResolutions {
scaleW := float64(res.X) / float64(w)
scaleH := float64(res.Y) / float64(h)
scale := math.Min(scaleW, scaleH)
scale := min(scaleW, scaleH)
scales[i] = scale
}
@@ -124,11 +124,11 @@ func (p ImageProcessor) maxResolution(imageRes, targetRes image.Point) image.Poi
if scaleW < scaleH {
newRes = image.Point{
targetRes.X,
int(math.Min(math.Floor(float64(imageRes.Y)*scaleW), float64(targetRes.Y))),
int(min(math.Floor(float64(imageRes.Y)*scaleW), float64(targetRes.Y))),
}
} else {
newRes = image.Point{
int(math.Min(math.Floor(float64(imageRes.X)*scaleH), float64(targetRes.X))),
int(min(math.Floor(float64(imageRes.X)*scaleH), float64(targetRes.X))),
targetRes.Y,
}
}

View File

@@ -18,7 +18,7 @@ type Model struct {
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v,vision"`
*VisionModel `gguf:"v"`
*MultiModalProjector `gguf:"mm"`
ImageProcessor
@@ -33,7 +33,6 @@ var _ model.TextProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
m := &Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
@@ -46,6 +45,7 @@ func New(c fs.Config) (model.Model, error) {
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
TextModel: newTextModel(c),
VisionModel: newVisionModel(c),
@@ -114,7 +114,7 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
return nil, err
}
pixelValues := ctx.Input().FromFloatSlice(f32s, size.X, size.Y, m.ImageProcessor.numChannels)
pixelValues := ctx.Input().FromFloats(f32s, size.X, size.Y, m.ImageProcessor.numChannels)
visionOutputs := m.VisionModel.Forward(ctx, pixelValues)
features, size := m.MultiModalProjector.Forward(ctx, visionOutputs, size)
@@ -133,22 +133,22 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
// [IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_BREAK][IMG]...[IMG][IMG_END]
// Each sequence of [IMG]...[IMG] is a set of patches of vision embeddings
// that can be processed together.
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
var result []*input.Input
for _, inp := range inputs {
if len(inp.Multimodal) == 0 {
result = append(result, inp)
} else {
for i, row := range inp.Multimodal {
// [IMG]
result = append(result, input.Input{Token: 10, Multimodal: []input.Multimodal{{Tensor: row.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: row.Tensor.Dim(1)})
result = append(result, slices.Repeat([]input.Input{{Token: 10}}, row.Tensor.Dim(1)-1)...)
result = append(result, &input.Input{Token: 10, Multimodal: []input.Multimodal{{Tensor: row.Tensor}}, MultimodalHash: inp.MultimodalHash, SameBatch: row.Tensor.Dim(1)})
result = append(result, slices.Repeat([]*input.Input{{Token: 10}}, row.Tensor.Dim(1)-1)...)
if i == len(inp.Multimodal)-1 {
// [IMG_END]
result = append(result, input.Input{Token: 13})
result = append(result, &input.Input{Token: 13})
} else {
// [IMG_BREAK]
result = append(result, input.Input{Token: 12})
result = append(result, &input.Input{Token: 12})
}
}
}
@@ -158,10 +158,9 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache), nil
}
func init() {

View File

@@ -40,11 +40,11 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale)
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale)
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale)
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -55,7 +55,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
}
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale), nil
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale), nil
}
type MLP struct {
@@ -65,7 +65,7 @@ type MLP struct {
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -132,7 +132,7 @@ func newTextModel(c fs.Config) *TextModel {
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeScale: c.Float("rope.scaling.factor", 1),
},
}
}

View File

@@ -51,7 +51,7 @@ type VisionMLP struct {
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
@@ -110,8 +110,8 @@ func (m *VisionModel) positionalEmbedding(ctx ml.Context, positionIDs ml.Tensor)
}
}
h := ctx.Input().FromFloatSlice(frequenciesHeight, maxPatchesPerSide, frequencies/2)
w := ctx.Input().FromFloatSlice(frequenciesWidth, maxPatchesPerSide, frequencies/2)
h := ctx.Input().FromFloats(frequenciesHeight, maxPatchesPerSide, frequencies/2)
w := ctx.Input().FromFloats(frequenciesWidth, maxPatchesPerSide, frequencies/2)
h = h.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
w = w.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
@@ -144,7 +144,7 @@ func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor) ml.Tensor {
}
}
positionIDs := ctx.Input().FromIntSlice(positions, len(positions))
positionIDs := ctx.Input().FromInts(positions, len(positions))
positionEmbedding := m.positionalEmbedding(ctx, positionIDs)
cos, sin := positionEmbedding.Cos(ctx), positionEmbedding.Sin(ctx)

View File

@@ -17,7 +17,7 @@ type Model struct {
model.Base
model.BytePairEncoding
*VisionModel `gguf:"v,vision"`
*VisionModel `gguf:"v"`
*TextModel
Projector *nn.Linear `gguf:"mm.0"`
@@ -33,7 +33,6 @@ const (
func New(c fs.Config) (model.Model, error) {
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
@@ -46,6 +45,7 @@ func New(c fs.Config) (model.Model, error) {
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
ImageProcessor: newImageProcessor(c),
VisionModel: newVisionModel(c),
@@ -80,8 +80,8 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
f32s = f32s[:m.imageSize*m.imageSize*m.numChannels*m.maxNumTiles]
}
pixelValues := ctx.Input().FromFloatSlice(f32s, m.imageSize, m.imageSize, m.numChannels, m.maxNumTiles)
aspectRatio := ctx.Input().FromIntSlice([]int32{int32(ratio.rank)}, 1)
pixelValues := ctx.Input().FromFloats(f32s, m.imageSize, m.imageSize, m.numChannels, m.maxNumTiles)
aspectRatio := ctx.Input().FromInts([]int32{int32(ratio.rank)}, 1)
positionIDs := ctx.Arange(0, 1601, 1, ml.DTypeI32)
crossAttentionStates := m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
@@ -90,7 +90,7 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
return []input.Multimodal{{Tensor: projectedOutputs}}, nil
}
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
for i := range inputs {
if inputs[i].Multimodal != nil {
inputs[i].Token = 128256 // <|image|>
@@ -106,11 +106,10 @@ func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
crossAttentionStates = batch.Multimodal[len(batch.Multimodal)-1].Multimodal[0].Tensor
}
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
// TODO: attention mask, cross attention mask
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
}
func init() {

View File

@@ -26,11 +26,11 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.T
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
query = fast.RoPE(ctx, query, positions, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithFactors(sa.RopeFactors))
key = fast.RoPE(ctx, key, positions, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithFactors(sa.RopeFactors))
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -45,7 +45,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions ml.T
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
// This will only get called for layers in the cache, which are just the self attention layers
if sa, ok := m.Transformer.Layers[layer].(*TextSelfAttentionDecoderLayer); ok {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithFactors(sa.SelfAttention.RopeFactors)), nil
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithFactors(sa.SelfAttention.RopeFactors)), nil
}
return key, nil
@@ -58,7 +58,7 @@ type TextMLP struct {
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextModelOptions) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -244,7 +244,7 @@ func newTextModel(c fs.Config) *TextModel {
ropeDim: int(c.Uint("rope.dimension_count")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeScale: c.Float("rope.scaling.factor", 1),
crossAttentionLayers: c.Ints("attention.cross_attention_layers"),
},
}

View File

@@ -53,7 +53,7 @@ func (p ImageProcessor) fitToCanvas(imageSize, canvasSize image.Point) image.Poi
tw := min(max(imageSize.X, p.imageSize), canvasSize.X)
th := min(max(imageSize.Y, p.imageSize), canvasSize.Y)
r := math.Min(
r := min(
float64(tw)/float64(imageSize.X),
float64(th)/float64(imageSize.Y),
)
@@ -89,10 +89,10 @@ func (p ImageProcessor) optimalTiledCanvas(imageSize image.Point) image.Point {
if minUpscale == 0 {
minUpscale = s
} else {
minUpscale = math.Min(minUpscale, s)
minUpscale = min(minUpscale, s)
}
} else {
maxDownscale = math.Max(maxDownscale, s)
maxDownscale = max(maxDownscale, s)
}
}

View File

@@ -1,6 +1,8 @@
package models
import (
_ "github.com/ollama/ollama/model/models/bert"
_ "github.com/ollama/ollama/model/models/deepseek2"
_ "github.com/ollama/ollama/model/models/gemma2"
_ "github.com/ollama/ollama/model/models/gemma3"
_ "github.com/ollama/ollama/model/models/gemma3n"
@@ -12,4 +14,5 @@ import (
_ "github.com/ollama/ollama/model/models/qwen2"
_ "github.com/ollama/ollama/model/models/qwen25vl"
_ "github.com/ollama/ollama/model/models/qwen3"
_ "github.com/ollama/ollama/model/models/qwen3vl"
)

View File

@@ -43,8 +43,8 @@ func (attn Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor,
value := attn.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
query = fast.RoPE(ctx, query, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
attention := nn.Attention(ctx, query, key, value, 1.0/math.Sqrt(float64(headDim)), cache)
attention = attention.Reshape(ctx, headDim*opts.numHeads, batchSize)
@@ -59,7 +59,7 @@ type MLP struct {
}
func (mlp MLP) Forward(ctx ml.Context, hiddenStates ml.Tensor) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
@@ -102,7 +102,7 @@ type Model struct {
// Forward implements model.Model.
func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
@@ -111,7 +111,7 @@ func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
outputs = batch.Outputs
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, &m.Options)
@@ -124,7 +124,7 @@ func (m Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
func (m Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
ropeDim := cmp.Or(m.ropeDim, m.hiddenSize/m.numHeads)
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithTypeNeoX()), nil
}
func New(c fs.Config) (model.Model, error) {
@@ -139,7 +139,6 @@ func New(c fs.Config) (model.Model, error) {
m := Model{
Layers: make([]DecoderLayer, c.Uint("block_count")),
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
@@ -152,6 +151,7 @@ func New(c fs.Config) (model.Model, error) {
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
Options: Options{
hiddenSize: int(c.Uint("embedding_length")),
@@ -160,7 +160,7 @@ func New(c fs.Config) (model.Model, error) {
headDim: int(c.Uint("attention.key_length")),
ropeDim: int(c.Uint("rope.dimension_count")),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeScale: c.Float("rope.scaling.factor", 1),
eps: c.Float("attention.layer_norm_rms_epsilon"),
},
}

View File

@@ -18,7 +18,7 @@ type Model struct {
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v,vision"`
*VisionModel `gguf:"v"`
ImageProcessor
}
@@ -29,7 +29,6 @@ var _ model.MultimodalProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
m := &Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
@@ -42,6 +41,7 @@ func New(c fs.Config) (model.Model, error) {
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
TextModel: NewTextModel(c),
VisionModel: newVisionModel(c),
@@ -69,7 +69,7 @@ func (m *Model) PixelValues(ctx ml.Context, multimodalData []byte) (ml.Tensor, *
m.ImageProcessor.patchSize * m.ImageProcessor.patchSize
numPatches := grid.Temporal * grid.Height * grid.Width
pixelValues := ctx.Input().FromFloatSlice(f32s, patchDim, numPatches)
pixelValues := ctx.Input().FromFloats(f32s, patchDim, numPatches)
return pixelValues, grid, nil
}
@@ -89,8 +89,8 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
}
// PostTokenize arranges Qwen-2.5-VL's inputs for the forward pass
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
var result []*input.Input
var (
imageToken int32 = 151655
@@ -112,16 +112,16 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
return nil, fmt.Errorf("failed to encode image prompt: %w", err)
}
for i := range pre {
result = append(result, input.Input{Token: pre[i]})
result = append(result, &input.Input{Token: pre[i]})
}
patchesPerChunk := inp.Multimodal[0].Tensor.Dim(1)
// First add the vision start token
result = append(result, input.Input{Token: visionStartToken})
result = append(result, &input.Input{Token: visionStartToken})
// Add the image token with the multimodal tensor data at the first position
result = append(result, input.Input{
result = append(result, &input.Input{
Token: imageToken,
Multimodal: inp.Multimodal,
MultimodalHash: inp.MultimodalHash,
@@ -129,9 +129,9 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
})
// Add the placeholder tokens for the remaining positions (tokensPerGrid-1)
result = append(result, slices.Repeat([]input.Input{{Token: imageToken}}, patchesPerChunk-1)...)
result = append(result, slices.Repeat([]*input.Input{{Token: imageToken}}, patchesPerChunk-1)...)
result = append(result, input.Input{Token: visionEndToken})
result = append(result, &input.Input{Token: visionEndToken})
}
}
@@ -139,10 +139,9 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache)
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache)
}
func init() {

View File

@@ -38,7 +38,7 @@ func NewTextModel(c fs.Config) *TextModel {
originalContextLength: int(c.Uint("context_length", 128000)),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeScale: c.Float("rope.scaling.factor", 1),
},
}
@@ -60,11 +60,11 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -78,7 +78,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
// Shift applies rotary position embeddings to the key tensor for causal attention caching
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithOriginalContextLength(m.originalContextLength), rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithOriginalContextLength(m.originalContextLength), rope.WithTypeNeoX()), nil
}
// MLP implements the feed-forward network component with SwiGLU activation
@@ -90,7 +90,7 @@ type MLP struct {
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
// Apply SwiGLU activation gating
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
// Project back to hidden dimension
return mlp.Down.Forward(ctx, hiddenState)
}

View File

@@ -43,7 +43,7 @@ func blockDiagonalMask(ctx ml.Context, seqLength int, bounds []int, numHeads int
}
}
mask := ctx.Input().FromFloatSlice(flat, seqLength, seqLength)
mask := ctx.Input().FromFloats(flat, seqLength, seqLength)
// Reshape to match [seqLength, seqLength, 1] for broadcasting
mask = mask.Reshape(ctx, seqLength, seqLength, 1)
@@ -100,8 +100,7 @@ type VisionMLP struct {
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
// Using activation as specified in config (likely GELU or SiLU/Swish)
gateOutput := mlp.Gate.Forward(ctx, hiddenStates)
upOutput := mlp.Up.Forward(ctx, hiddenStates)
hiddenStates = gateOutput.SILU(ctx).Mul(ctx, upOutput)
hiddenStates = gateOutput.SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
@@ -300,7 +299,7 @@ func (m *VisionModel) WindowIndex(ctx ml.Context, grid *Grid) (ml.Tensor, []int)
}
}
t := ctx.Input().FromIntSlice(index, len(index))
t := ctx.Input().FromInts(index, len(index))
return t, bounds
}
@@ -320,7 +319,7 @@ func (m *VisionModel) PositionalEmbedding(ctx ml.Context, grid *Grid) ml.Tensor
freqVals[i*freq+j] = float32(i) / float32(math.Pow(theta, float64(j*2)/float64(dim)))
}
}
freqs := ctx.Input().FromFloatSlice(freqVals, freq, maxGridSize)
freqs := ctx.Input().FromFloats(freqVals, freq, maxGridSize)
// Create position coordinates (y,x pairs) for the grid
// In PyTorch: Equivalent to generating position ids with torch.arange()
@@ -330,7 +329,7 @@ func (m *VisionModel) PositionalEmbedding(ctx ml.Context, grid *Grid) ml.Tensor
coords = append(coords, int32(y), int32(x))
}
}
pos := ctx.Input().FromIntSlice(coords, 2, grid.Width, grid.Height)
pos := ctx.Input().FromInts(coords, 2, grid.Width, grid.Height)
// Reshape and permute positions to match spatial merging pattern
pos = pos.Reshape(ctx, 2, grid.Width, merge, grid.Height/merge)

View File

@@ -79,6 +79,8 @@ type Grid struct {
}
func (p *ImageProcessor) ProcessImage(img image.Image) ([]float32, *Grid, error) {
img = imageproc.Composite(img)
origWidth := img.Bounds().Dx()
origHeight := img.Bounds().Dy()

View File

@@ -0,0 +1,73 @@
package qwen3
import (
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type embedModel struct {
model.Base
model.BytePairEncoding
*Model
poolingType pooling.Type
}
func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates, err := m.forward(ctx, batch)
if err != nil {
return nil, err
}
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
return hiddenStates, nil
}
func newEmbed(c fs.Config) (model.Model, error) {
layers := make([]Layer, c.Uint("block_count"))
for i := range layers {
layers[i].MLP = &dense{}
}
m := embedModel{
BytePairEncoding: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
Model: &Model{
Layers: layers,
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("norm_top_k_prob", true),
},
},
poolingType: pooling.Type(c.Uint("pooling_type")),
}
m.Cache = kvcache.NewCausalCache(m.Shift)
return &m, nil
}

View File

@@ -3,6 +3,7 @@ package qwen3
import (
"cmp"
"math"
"strings"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
@@ -15,11 +16,17 @@ import (
)
type Options struct {
hiddenSize, numHeads, numKVHeads int
eps float32
ropeBase, ropeScale float32
hiddenSize,
numHeads,
numKVHeads,
keyLength,
valueLength int
keyLength, valueLength int
eps,
ropeBase,
ropeScale float32
ropeType string
originalContextLength int
numExperts, numExpertsUsed int
normTopKProb bool
@@ -29,11 +36,24 @@ func (o Options) headDim() int {
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}
func (o Options) applyRotaryPositionEmbeddings(ctx ml.Context, states, positions ml.Tensor) ml.Tensor {
opts := []func(*rope.Options){rope.WithTypeNeoX()}
if o.ropeType == "yarn" {
attnFactor := float32(1.0 / (1.0 + 0.1*math.Log(float64(o.ropeScale))))
opts = append(opts,
rope.WithOriginalContextLength(o.originalContextLength),
rope.WithExtrapolationFactor(1.),
rope.WithAttentionFactor(attnFactor),
)
}
return fast.RoPE(ctx, states, positions, o.headDim(), o.ropeBase, 1./o.ropeScale, opts...)
}
type Attention struct {
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Query *nn.Linear `gguf:"attn_q"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
@@ -52,8 +72,8 @@ func (sa *Attention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor,
query = sa.QueryNorm.Forward(ctx, query, opts.eps)
key = sa.KeyNorm.Forward(ctx, key, opts.eps)
query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
key = fast.RoPE(ctx, key, positions, opts.headDim(), opts.ropeBase, opts.ropeScale, rope.WithTypeNeoX())
query = opts.applyRotaryPositionEmbeddings(ctx, query, positions)
key = opts.applyRotaryPositionEmbeddings(ctx, key, positions)
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim())), cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
@@ -65,10 +85,10 @@ type MLP interface {
}
type sparse struct {
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.Linear `gguf:"ffn_gate_exps"`
Up *nn.Linear `gguf:"ffn_up_exps"`
Down *nn.Linear `gguf:"ffn_down_exps"`
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
}
func (mlp *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
@@ -87,13 +107,9 @@ func (mlp *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
upStates := mlp.Up.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates, selectedExperts).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates, selectedExperts))
hiddenStates = mlp.Gate.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
hiddenStates = hiddenStates.SILU(ctx)
hiddenStates = hiddenStates.Mul(ctx, upStates)
experts := mlp.Down.Weight.MulmatID(ctx, hiddenStates, selectedExperts)
experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
experts = experts.Mul(ctx, routingWeights)
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
@@ -111,7 +127,8 @@ type dense struct {
}
func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ *Options) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenStates))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).
SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
@@ -154,29 +171,39 @@ type Model struct {
*Options
}
// Forward implements model.Model.
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
hiddenStates, err := m.forward(ctx, batch)
if err != nil {
return nil, err
}
return m.Output.Forward(ctx, hiddenStates), nil
}
// Forward implements model.Model.
func (m *Model) forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
for i, layer := range m.Layers {
m.Cache.SetLayer(i)
if m.Cache != nil {
m.Cache.SetLayer(i)
}
var outputs ml.Tensor
if i == len(m.Layers)-1 {
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
outputs = batch.Outputs
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
}
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
return m.Output.Forward(ctx, hiddenStates), nil
return m.OutputNorm.Forward(ctx, hiddenStates, m.eps), nil
}
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.headDim(), m.ropeBase, m.ropeScale, rope.WithTypeNeoX()), nil
return m.Options.applyRotaryPositionEmbeddings(ctx, key, shift), nil
}
var _ model.Model = (*Model)(nil)
@@ -184,7 +211,7 @@ var _ model.Model = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
layers := make([]Layer, c.Uint("block_count"))
for i := range layers {
if c.String("general.architecture") == "qwen3moe" {
if strings.HasSuffix(c.String("general.architecture"), "moe") {
layers[i].MLP = &sparse{}
} else {
layers[i].MLP = &dense{}
@@ -193,7 +220,6 @@ func New(c fs.Config) (model.Model, error) {
m := Model{
BytePairEncoding: model.NewBytePairEncoding(
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
@@ -206,20 +232,23 @@ func New(c fs.Config) (model.Model, error) {
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
Layers: layers,
Options: &Options{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("norm_top_k_prob", true),
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeType: c.String("rope.scaling.type"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
originalContextLength: int(c.Uint("rope.scaling.original_context_length")),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("norm_top_k_prob", true),
},
}
@@ -230,4 +259,5 @@ func New(c fs.Config) (model.Model, error) {
func init() {
model.Register("qwen3", New)
model.Register("qwen3moe", New)
model.Register("qwen3_embed", newEmbed)
}

View File

@@ -0,0 +1,196 @@
package qwen3vl
import (
"fmt"
"image"
"math"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model/imageproc"
)
// ImageProcessor contains configuration for the Qwen 3 VL image processing
type ImageProcessor struct {
numChannels int
patchSize int
temporalPatchSize int
mergeSize int
shortestEdge int
longestEdge int
factor int
rescaleFactor float32
imageMean []float32
imageStd []float32
}
// newImageProcessor creates a new image processor with default values
func newImageProcessor(c fs.Config) ImageProcessor {
patchSize := int(c.Uint("vision.patch_size", 14))
mergeSize := int(c.Uint("vision.spatial_merge_size", 2))
return ImageProcessor{
numChannels: int(c.Uint("vision.num_channels", 3)), // not set
patchSize: patchSize,
temporalPatchSize: 2,
mergeSize: mergeSize,
shortestEdge: int(c.Uint("vision.shortest_edge", 64<<10)),
// FIXME(mxyng): the model defined longest edge (16M) is too large for the default
// context length of 8K and will panic. Adjusting to 2M for now.
// longestEdge: int(c.Uint("vision.longest_edge", 16<<20)),
longestEdge: 2 << 20,
factor: patchSize * mergeSize,
rescaleFactor: 1.0 / 255.0,
imageMean: c.Floats("vision.image_mean", imageproc.ImageNetStandardMean[:]),
imageStd: c.Floats("vision.image_std", imageproc.ImageNetStandardSTD[:]),
}
}
// SmartResize implements the smart resize algorithm
func (p *ImageProcessor) SmartResize(height, width int) (int, int) {
factor := p.factor
if height < factor || width < factor {
panic(fmt.Sprintf("height:%d or width:%d must be larger than factor:%d", height, width, factor))
} else if aspectRatio := max(height, width) / min(height, width); aspectRatio > 200 {
panic(fmt.Sprintf("absolute aspect ratio must be smaller than 200, got %v", aspectRatio))
}
round := func(x float64) int { return int(math.RoundToEven(x)) }
hBar := round(float64(height)/float64(factor)) * factor
wBar := round(float64(width)/float64(factor)) * factor
if hBar*wBar > p.longestEdge {
beta := math.Sqrt(float64(height*width) / float64(p.longestEdge))
hBar = int(math.Floor(float64(height)/beta/float64(factor))) * factor
wBar = int(math.Floor(float64(width)/beta/float64(factor))) * factor
} else if hBar*wBar < p.shortestEdge {
beta := math.Sqrt(float64(p.shortestEdge) / float64(height*width))
hBar = int(math.Ceil(float64(height)*beta/float64(factor))) * factor
wBar = int(math.Ceil(float64(width)*beta/float64(factor))) * factor
}
return hBar, wBar
}
type Grid struct {
Height int
Width int
Temporal int
}
func (p *ImageProcessor) ProcessImage(ctx ml.Context, img image.Image) (ml.Tensor, *Grid, error) {
img = imageproc.Composite(img)
origWidth := img.Bounds().Dx()
origHeight := img.Bounds().Dy()
// Calculate smart resize dimensions
resizedHeight, resizedWidth := p.SmartResize(origHeight, origWidth)
// Resize image using existing functions
resizedImg := imageproc.Resize(img, image.Point{X: resizedWidth, Y: resizedHeight}, imageproc.ResizeBilinear)
normalizedPixels := imageproc.Normalize(
resizedImg,
[3]float32{p.imageMean[0], p.imageMean[1], p.imageMean[2]},
[3]float32{p.imageStd[0], p.imageStd[1], p.imageStd[2]},
true, // rescale
true, // channelFirst
)
// Calculate grid dimensions
grid := &Grid{
Height: resizedHeight / p.patchSize,
Width: resizedWidth / p.patchSize,
Temporal: 1, // For single images, temporal dimension is 1
}
patches, err := p.createPatches(normalizedPixels, resizedHeight, resizedWidth, grid)
if err != nil {
return nil, nil, fmt.Errorf("failed to create patches: %v", err)
}
patchDim := p.numChannels * p.temporalPatchSize *
p.patchSize * p.patchSize
numPatches := grid.Temporal * grid.Height * grid.Width
pixelValues := ctx.Input().FromFloats(patches, patchDim, numPatches)
// Return patches and grid dimensions
return pixelValues, grid, nil
}
func (p *ImageProcessor) createPatches(pixels []float32, height, width int, grid *Grid) ([]float32, error) {
channels := p.numChannels
patchSize := p.patchSize
mergeSize := p.mergeSize
temporalPatchSize := p.temporalPatchSize
// Calculate output dimensions
numPatches := grid.Temporal * grid.Height * grid.Width
patchDim := channels * temporalPatchSize * patchSize * patchSize
result := make([]float32, numPatches*patchDim)
patchIndex := 0
// Single temporal frame handling (copies to all frames)
for range grid.Temporal {
for h := 0; h < grid.Height; h += mergeSize {
for w := 0; w < grid.Width; w += mergeSize {
// Handle the 2x2 merged patches
for mh := range mergeSize {
for mw := range mergeSize {
baseOffset := patchIndex * patchDim
// Extract patch data for first temporal frame
for c := range channels {
channelOffset := baseOffset + (c * temporalPatchSize * patchSize * patchSize)
for py := range patchSize {
for px := range patchSize {
// Calculate source pixel coordinates
y := (h+mh)*patchSize + py
x := (w+mw)*patchSize + px
// Source index in input tensor (CHW format)
srcIdx := c*height*width + y*width + x
// Destination index in first temporal frame
dstIdx := channelOffset + (py * patchSize) + px
if srcIdx < len(pixels) && dstIdx < len(result) {
result[dstIdx] = pixels[srcIdx]
}
}
}
}
// Copy first temporal frame to all other frames
if temporalPatchSize > 1 {
for c := range channels {
channelOffset := baseOffset + (c * temporalPatchSize * patchSize * patchSize)
firstFrameOffset := channelOffset
frameSize := patchSize * patchSize
// Copy first frame to all other frames
for tp := 1; tp < temporalPatchSize; tp++ {
currentFrameOffset := channelOffset + (tp * frameSize)
copy(result[currentFrameOffset:currentFrameOffset+frameSize],
result[firstFrameOffset:firstFrameOffset+frameSize])
}
}
}
patchIndex++
}
}
}
}
}
return result, nil
}

View File

@@ -0,0 +1,206 @@
package qwen3vl
import (
"bytes"
"image"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type Model struct {
model.Base
model.TextProcessor
*TextModel
*VisionModel `gguf:"v"`
ImageProcessor
positionCache []int32
}
func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input.Multimodal, error) {
if len(m.VisionModel.Layers) == 0 {
return nil, model.ErrNoVisionModel
}
img, _, err := image.Decode(bytes.NewReader(multimodalData))
if err != nil {
return nil, err
}
pixelValues, grid, err := m.ProcessImage(ctx, img)
if err != nil {
return nil, err
}
// Calculate tensor dimensions
visionOutputs, deepstackVisualEmbeds := m.VisionModel.Forward(ctx, pixelValues, grid)
mm := []input.Multimodal{{Tensor: visionOutputs, Data: grid}}
for i := range deepstackVisualEmbeds {
mm = append(mm, input.Multimodal{Tensor: deepstackVisualEmbeds[i]})
}
return mm, nil
}
var (
tokenVision int32 = 151655
tokenVisionStart int32 = 151652
tokenVisionEnd int32 = 151653
)
type modelInput struct {
*input.Input
position int32
}
// PostTokenize arranges Qwen 3 VL's inputs for the forward pass
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
m.positionCache = m.positionCache[:0]
return slices.Collect(func(yield func(*input.Input) bool) {
for i := range inputs {
s := []modelInput{{Input: inputs[i]}}
if mm := inputs[i].Multimodal; mm != nil {
t := mm[0].Tensor
s = slices.Repeat([]modelInput{
{
position: int32(i + 1),
Input: &input.Input{Token: tokenVision},
},
}, t.Dim(1)+1+1)
s[0] = modelInput{
Input: &input.Input{Token: tokenVisionStart},
position: int32(i),
}
s[len(s)-1] = modelInput{
Input: &input.Input{Token: tokenVisionEnd},
position: int32(i + mm[0].Data.(*Grid).Width/m.spatialMergeSize + 1),
}
s[1] = modelInput{
Input: &input.Input{
Token: tokenVision,
Multimodal: inputs[i].Multimodal,
MultimodalHash: inputs[i].MultimodalHash,
SameBatch: t.Dim(1),
},
position: int32(i + 1),
}
}
for _, e := range s {
position := e.position
if position == 0 && len(m.positionCache) > 0 {
position = m.positionCache[len(m.positionCache)-1] + 1
}
m.positionCache = append(m.positionCache, position)
if !yield(e.Input) {
return
}
}
}
}), nil
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
// ggml mrope requires 4 positions per token: [time, height, width, extra]
positionSlice := slices.Collect(makeSlice2D[int32](4, len(batch.Positions)))
for i, id := range batch.Positions {
if id < int32(len(m.positionCache)) {
id = m.positionCache[id]
} else if len(m.positionCache) > 0 {
id = id - int32(len(m.positionCache)) + m.positionCache[len(m.positionCache)-1] + 1
}
positionSlice[0][i] = id
positionSlice[1][i] = id
positionSlice[2][i] = id
// positionSlice[3] is intentionally left as zeros
}
hiddenStates := m.TextModel.TokenEmbedding.Forward(ctx, batch.Inputs).Duplicate(ctx)
var deepstackVisualEmbeds []ml.Tensor
for _, mi := range batch.Multimodal {
visionOutputs := mi.Multimodal[0].Tensor
ctx.Forward(visionOutputs.Copy(ctx, hiddenStates.View(ctx, mi.Index*hiddenStates.Stride(1), visionOutputs.Dim(0)*visionOutputs.Dim(1))))
if grid, ok := mi.Multimodal[0].Data.(*Grid); ok {
for i := range visionOutputs.Dim(1) {
w := grid.Width / m.spatialMergeSize
positionSlice[1][mi.Index+i] += int32(i / w)
positionSlice[2][mi.Index+i] += int32(i % w)
}
}
deepstackVisualEmbeds = make([]ml.Tensor, len(mi.Multimodal[1:]))
for i, mm := range mi.Multimodal[1:] {
deepstackVisualEmbeds[i] = ctx.Input().Zeros(mm.Tensor.DType(), hiddenStates.Shape()...)
ctx.Forward(mm.Tensor.Copy(ctx, deepstackVisualEmbeds[i].View(ctx, mi.Index*deepstackVisualEmbeds[i].Stride(1), mm.Tensor.Dim(0)*mm.Tensor.Dim(1))))
}
}
positions := ctx.Input().FromInts(slices.Concat(positionSlice...), len(positionSlice[0])*len(positionSlice))
for i, layer := range m.TextModel.Layers {
if m.Cache != nil {
m.Cache.SetLayer(i)
}
var outputs ml.Tensor
if i == len(m.TextModel.Layers)-1 {
outputs = batch.Outputs
}
hiddenStates = layer.Forward(ctx, hiddenStates, positions, outputs, m.Cache, m.Options)
if i < len(deepstackVisualEmbeds) {
hiddenStates = hiddenStates.Add(ctx, deepstackVisualEmbeds[i])
}
}
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, 1e-06)
return m.Output.Forward(ctx, hiddenStates), nil
}
func New(c fs.Config) (model.Model, error) {
m := Model{
TextProcessor: model.NewBytePairEncoding(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", false),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{int32(c.Uint("tokenizer.ggml.eos_token_id"))},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
TextModel: newTextModel(c),
VisionModel: newVisionModel(c),
ImageProcessor: newImageProcessor(c),
}
m.Cache = kvcache.NewCausalCache(func(ctx ml.Context, layer int, key, positions ml.Tensor) (ml.Tensor, error) {
m.positionCache = nil
positions = positions.Repeat(ctx, 1, 4).Reshape(ctx, -1)
return m.Options.applyRotaryPositionalEmbedding(ctx, key, positions), nil
})
return &m, nil
}
func init() {
model.Register("qwen3vl", New)
model.Register("qwen3vlmoe", New)
}

View File

@@ -0,0 +1,199 @@
package qwen3vl
import (
"cmp"
"math"
"slices"
"strings"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/kvcache"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/fast"
"github.com/ollama/ollama/ml/nn/rope"
"github.com/ollama/ollama/model"
)
type TextOptions struct {
hiddenSize,
numHeads,
numKVHeads,
keyLength,
valueLength int
eps,
ropeBase,
ropeScale float32
mropeSections []int
numExperts, numExpertsUsed int
normTopKProb bool
}
func (o TextOptions) headDim() int {
return cmp.Or(o.keyLength, o.valueLength, o.hiddenSize/o.numHeads)
}
func (o TextOptions) applyRotaryPositionalEmbedding(ctx ml.Context, t, p ml.Tensor) ml.Tensor {
return fast.RoPE(ctx, t, p, o.headDim(), o.ropeBase, 1/float32(math.Sqrt(float64(o.ropeScale))),
rope.WithMRoPESections(o.mropeSections),
)
}
type TextAttention struct {
Query *nn.Linear `gguf:"attn_q"`
QueryNorm *nn.RMSNorm `gguf:"attn_q_norm"`
Key *nn.Linear `gguf:"attn_k"`
KeyNorm *nn.RMSNorm `gguf:"attn_k_norm"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *TextAttention) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
batchSize := hiddenStates.Dim(1)
query := sa.Query.Forward(ctx, hiddenStates)
key := sa.Key.Forward(ctx, hiddenStates)
value := sa.Value.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
query = sa.QueryNorm.Forward(ctx, query, opts.eps)
key = sa.KeyNorm.Forward(ctx, key, opts.eps)
query = opts.applyRotaryPositionalEmbedding(ctx, query, positions)
key = opts.applyRotaryPositionalEmbedding(ctx, key, positions)
attention := nn.Attention(ctx, query, key, value, 1./math.Sqrt(float64(opts.headDim())), cache)
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
return sa.Output.Forward(ctx, attention)
}
type TextMLP interface {
Forward(ml.Context, ml.Tensor, *TextOptions) ml.Tensor
}
type sparse struct {
Router *nn.Linear `gguf:"ffn_gate_inp"`
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
}
func (mlp *sparse) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *TextOptions) ml.Tensor {
hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
routerLogits := mlp.Router.Forward(ctx, hiddenStates)
routingWeights := routerLogits.Softmax(ctx)
selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed)
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, hiddenStates.Dim(1)).Rows(ctx, selectedExperts)
if opts.normTopKProb {
routingWeights = routingWeights.Reshape(ctx, opts.numExpertsUsed, hiddenStates.Dim(1))
routingWeights = routingWeights.Div(ctx, routingWeights.SumRows(ctx))
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExpertsUsed, hiddenStates.Dim(1))
}
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates, selectedExperts).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates, selectedExperts))
experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
experts = experts.Mul(ctx, routingWeights)
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
for i := 1; i < opts.numExpertsUsed; i++ {
nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
}
return nextStates
}
type dense struct {
Gate *nn.Linear `gguf:"ffn_gate"`
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
}
func (mlp *dense) Forward(ctx ml.Context, hiddenStates ml.Tensor, _ *TextOptions) ml.Tensor {
hiddenStates = mlp.Gate.Forward(ctx, hiddenStates).SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
type TextLayer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
*TextAttention
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
TextMLP
}
func (d *TextLayer) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
residual := hiddenStates
hiddenStates = d.AttentionNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = d.TextAttention.Forward(ctx, hiddenStates, positions, cache, opts)
if outputs != nil {
hiddenStates = hiddenStates.Rows(ctx, outputs)
residual = residual.Rows(ctx, outputs)
}
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = d.MLPNorm.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = d.TextMLP.Forward(ctx, hiddenStates, opts)
return hiddenStates.Add(ctx, residual)
}
type TextModel struct {
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
Layers []TextLayer `gguf:"blk"`
Options *TextOptions
}
var _ model.Model = (*Model)(nil)
func newTextModel(c fs.Config) *TextModel {
layers := make([]TextLayer, c.Uint("block_count"))
for i := range layers {
if strings.HasSuffix(c.String("general.architecture"), "moe") {
layers[i].TextMLP = &sparse{}
} else {
layers[i].TextMLP = &dense{}
}
}
m := TextModel{
Layers: layers,
Options: &TextOptions{
hiddenSize: int(c.Uint("embedding_length")),
numHeads: int(c.Uint("attention.head_count")),
numKVHeads: int(c.Uint("attention.head_count_kv")),
keyLength: int(c.Uint("attention.key_length")),
valueLength: int(c.Uint("attention.value_length")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.scaling.factor", 1),
numExperts: int(c.Uint("expert_count")),
numExpertsUsed: int(c.Uint("expert_used_count")),
normTopKProb: c.Bool("norm_top_k_prob", true),
mropeSections: slices.Collect(func(yield func(int) bool) {
for _, section := range c.Ints("mrope_sections", []int32{24, 20, 20}) {
if !yield(int(section)) {
return
}
}
}),
},
}
return &m
}

View File

@@ -0,0 +1,268 @@
package qwen3vl
import (
"iter"
"math"
"slices"
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
type VisionAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_out"`
}
func rotateHalf(ctx ml.Context, t ml.Tensor) ml.Tensor {
x1 := t.View(ctx, 0, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3))
x2 := t.View(ctx, t.Stride(0)*t.Dim(0)/2, t.Dim(0)/2, t.Stride(1), t.Dim(1), t.Stride(2), t.Dim(2), t.Stride(3), t.Dim(3)).Contiguous(ctx)
return x2.Scale(ctx, -1).Concat(ctx, x1, 0)
}
func applyRotaryPositionalEmbedding(ctx ml.Context, t, cos, sin ml.Tensor) ml.Tensor {
return t.Mul(ctx, cos).Add(ctx, rotateHalf(ctx, t).Mul(ctx, sin))
}
func (sa *VisionAttention) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts VisionOptions) ml.Tensor {
query := sa.Query.Forward(ctx, hiddenStates)
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, query.Dim(1))
query = applyRotaryPositionalEmbedding(ctx, query, cos, sin)
key := sa.Key.Forward(ctx, hiddenStates)
key = key.Reshape(ctx, opts.headDim(), opts.numHeads, key.Dim(1))
key = applyRotaryPositionalEmbedding(ctx, key, cos, sin)
value := sa.Value.Forward(ctx, hiddenStates)
value = value.Reshape(ctx, opts.headDim(), opts.numHeads, value.Dim(1))
attention := nn.Attention(ctx, query, key, value, math.Pow(float64(opts.headDim()), -0.5), nil)
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2))
return sa.Output.Forward(ctx, attention)
}
type VisionMLP struct {
FC1 *nn.Linear `gguf:"linear_fc1"`
FC2 *nn.Linear `gguf:"linear_fc2"`
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts VisionOptions) ml.Tensor {
return mlp.FC2.Forward(ctx, mlp.FC1.Forward(ctx, hiddenStates).GELU(ctx))
}
type VisionEncoderLayer struct {
Norm1 *nn.LayerNorm `gguf:"norm1"`
Attention *VisionAttention
Norm2 *nn.LayerNorm `gguf:"norm2"`
MLP *VisionMLP `gguf:"mlp"`
}
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenStates, cos, sin ml.Tensor, opts VisionOptions) ml.Tensor {
residual := hiddenStates
hiddenStates = e.Norm1.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.Attention.Forward(ctx, hiddenStates, cos, sin, opts)
hiddenStates = hiddenStates.Add(ctx, residual)
residual = hiddenStates
hiddenStates = e.Norm2.Forward(ctx, hiddenStates, opts.eps)
hiddenStates = e.MLP.Forward(ctx, hiddenStates, opts)
return hiddenStates.Add(ctx, residual)
}
type VisionOptions struct {
hiddenSize,
numHeads,
patchSize,
numChannels,
spatialMergeSize,
temporalPatchSize,
gridPerSide int
eps,
ropeTheta float32
deepstackVisualIndexes []int32
mropeSections []int
}
func (o VisionOptions) headDim() int {
return o.hiddenSize / o.numHeads
}
type VisionPatchMerger struct {
Norm *nn.LayerNorm `gguf:"norm"`
FC1 *nn.Linear `gguf:"linear_fc1"`
FC2 *nn.Linear `gguf:"linear_fc2"`
}
func (m *VisionPatchMerger) Forward(ctx ml.Context, visionOutputs ml.Tensor, postshuffleNorm bool, opts VisionOptions) ml.Tensor {
hiddenSize := opts.hiddenSize * opts.spatialMergeSize * opts.spatialMergeSize
if postshuffleNorm {
visionOutputs = visionOutputs.Reshape(ctx, hiddenSize, -1)
}
visionOutputs = m.Norm.Forward(ctx, visionOutputs, opts.eps)
visionOutputs = visionOutputs.Reshape(ctx, hiddenSize, -1)
return m.FC2.Forward(ctx, m.FC1.Forward(ctx, visionOutputs).GELU(ctx))
}
type VisionPositionEmbedding struct {
PositionEmbedding *nn.Embedding `gguf:"pos_embed"`
}
func makeSlice2D[T int32 | float32](n0, n1 int) iter.Seq[[]T] {
return func(yield func([]T) bool) {
for range n0 {
if !yield(make([]T, n1)) {
return
}
}
}
}
func (m *VisionPositionEmbedding) Forward(ctx ml.Context, hiddenStates ml.Tensor, grid *Grid, opts VisionOptions) ml.Tensor {
indexSlice := slices.Collect(makeSlice2D[int32](4, grid.Height*grid.Width))
weightSlice := slices.Collect(makeSlice2D[float32](4, grid.Height*grid.Width))
stepHeight := float32(opts.gridPerSide-1) / float32(grid.Height-1)
stepWidth := float32(opts.gridPerSide-1) / float32(grid.Width-1)
var i int
for h := range grid.Height {
for w := range grid.Width {
y, x := float32(h)*stepHeight, float32(w)*stepWidth
floorY, floorX := int32(y), int32(x)
ceilY, ceilX := min(floorY+1, int32(opts.gridPerSide-1)), min(floorX+1, int32(opts.gridPerSide-1))
indexSlice[0][i] = floorY*int32(opts.gridPerSide) + floorX
indexSlice[1][i] = floorY*int32(opts.gridPerSide) + ceilX
indexSlice[2][i] = ceilY*int32(opts.gridPerSide) + floorX
indexSlice[3][i] = ceilY*int32(opts.gridPerSide) + ceilX
weightSlice[0][i] = (1 - (y - float32(floorY))) * (1 - (x - float32(floorX)))
weightSlice[1][i] = (1 - (y - float32(floorY))) * (x - float32(floorX))
weightSlice[2][i] = (y - float32(floorY)) * (1 - (x - float32(floorX)))
weightSlice[3][i] = (y - float32(floorY)) * (x - float32(floorX))
i++
}
}
indices := ctx.Input().FromInts(slices.Concat(indexSlice...), grid.Height*grid.Width*4)
weights := ctx.Input().FromFloats(slices.Concat(weightSlice...), 1, grid.Height*grid.Width*4)
n := hiddenStates.Dim(0)
positionEmbeds := m.PositionEmbedding.Forward(ctx, indices)
positionEmbeds = positionEmbeds.Mul(ctx, weights)
positionEmbeds = positionEmbeds.Reshape(ctx, n, -1, 4)
positionEmbeds = positionEmbeds.View(ctx, 0, n, positionEmbeds.Stride(1), grid.Height*grid.Width).
Add(ctx, positionEmbeds.View(ctx, 1*positionEmbeds.Stride(2), n, positionEmbeds.Stride(1), grid.Height*grid.Width)).
Add(ctx, positionEmbeds.View(ctx, 2*positionEmbeds.Stride(2), n, positionEmbeds.Stride(1), grid.Height*grid.Width)).
Add(ctx, positionEmbeds.View(ctx, 3*positionEmbeds.Stride(2), n, positionEmbeds.Stride(1), grid.Height*grid.Width))
positionEmbeds = positionEmbeds.Reshape(ctx, -1, grid.Width/opts.spatialMergeSize, opts.spatialMergeSize, grid.Height/opts.spatialMergeSize)
positionEmbeds = positionEmbeds.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx, n, -1)
return hiddenStates.Add(ctx, positionEmbeds)
}
type VisionModel struct {
PatchEmbedding *nn.Conv3D `gguf:"patch_embed"`
PositionEmbedding *VisionPositionEmbedding
Layers []VisionEncoderLayer `gguf:"blk"`
PatchMerger *VisionPatchMerger `gguf:"merger"`
DeepstackMerger []*VisionPatchMerger `gguf:"deepstack_merger"`
VisionOptions
}
func (m *VisionModel) positions(ctx ml.Context, grid *Grid) (_, _ ml.Tensor) {
indices := ctx.Input().FromInts(slices.Collect(func(yield func(int32) bool) {
for y := range grid.Height {
for x := range grid.Width {
if !yield(int32(y)) {
return
}
if !yield(int32(x)) {
return
}
}
}
}), grid.Width*grid.Height*2)
indices = indices.Reshape(ctx, -1, grid.Width/m.spatialMergeSize, m.spatialMergeSize, grid.Height/m.spatialMergeSize)
indices = indices.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
indices = indices.Reshape(ctx, -1)
halfDim := m.headDim() / 2
maxGrid := max(grid.Height, grid.Width)
frequencies := ctx.Input().FromFloats(slices.Collect(func(yield func(float32) bool) {
ropeTheta := float64(m.ropeTheta)
for i := range maxGrid {
for j := range halfDim / 2 {
if !yield(float32(i) / float32(math.Pow(ropeTheta, float64(j*2)/float64(halfDim)))) {
return
}
}
}
}), halfDim/2, maxGrid)
embeds := frequencies.Rows(ctx, indices)
embeds = embeds.Reshape(ctx, halfDim, 1, -1)
embeds = embeds.Concat(ctx, embeds, 0)
return embeds.Cos(ctx), embeds.Sin(ctx)
}
// Forward computes the vision model for an input tensor
func (m *VisionModel) Forward(ctx ml.Context, pixelValues ml.Tensor, grid *Grid) (ml.Tensor, []ml.Tensor) {
pixelValues = pixelValues.Reshape(ctx, m.patchSize, m.patchSize, m.temporalPatchSize, -1)
hiddenStates := m.PatchEmbedding.Forward(ctx, pixelValues, m.numChannels, m.patchSize, m.patchSize, m.temporalPatchSize, 0, 0, 0, 1, 1, 1)
hiddenStates = m.PositionEmbedding.Forward(ctx, hiddenStates, grid, m.VisionOptions)
cos, sin := m.positions(ctx, grid)
deepstackStates := make([]ml.Tensor, len(m.deepstackVisualIndexes))
for i, layer := range m.Layers {
hiddenStates = layer.Forward(ctx, hiddenStates, cos, sin, m.VisionOptions)
if i := slices.Index(m.deepstackVisualIndexes, int32(i)); i >= 0 {
deepstackStates[i] = m.DeepstackMerger[i].Forward(ctx, hiddenStates, true, m.VisionOptions)
}
}
hiddenStates = m.PatchMerger.Forward(ctx, hiddenStates, false, m.VisionOptions)
return hiddenStates, deepstackStates
}
// newVisionModel creates a new instance of the Qwen vision model
func newVisionModel(c fs.Config) *VisionModel {
deepstackVisualIndexes := c.Ints("vision.deepstack_visual_indexes")
model := &VisionModel{
Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count", 32)),
DeepstackMerger: make([]*VisionPatchMerger, len(deepstackVisualIndexes)),
VisionOptions: VisionOptions{
hiddenSize: int(c.Uint("vision.embedding_length", 1280)),
numHeads: int(c.Uint("vision.attention.head_count", 16)),
patchSize: int(c.Uint("vision.patch_size", 14)),
numChannels: int(c.Uint("vision.num_channels", 3)),
eps: c.Float("vision.attention.layer_norm_epsilon", 1e-6),
ropeTheta: c.Float("vision.rope.freq_base", 10000.0),
spatialMergeSize: int(c.Uint("vision.spatial_merge_size", 2)),
temporalPatchSize: int(c.Uint("vision.temporal_patch_size", 2)),
gridPerSide: int(math.Sqrt(float64(c.Uint("vision.num_positional_embeddings", 2304)))),
mropeSections: slices.Collect(func(yield func(int) bool) {
for _, section := range c.Ints("mrope_sections", []int32{24, 20, 20}) {
if !yield(int(section)) {
return
}
}
}),
deepstackVisualIndexes: deepstackVisualIndexes,
},
}
return model
}