Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support

This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Shang Chieh Tseng
2025-11-05 14:03:05 +08:00
parent fabe2c5cb7
commit ef14fb5b26
817 changed files with 241634 additions and 70888 deletions

View File

@@ -0,0 +1,56 @@
package gemma3
import (
"github.com/ollama/ollama/fs"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/ml/nn/pooling"
"github.com/ollama/ollama/model"
"github.com/ollama/ollama/model/input"
)
type embedModel struct {
model.Base
model.SentencePiece
*TextModel
poolingType pooling.Type
Dense [2]*nn.Linear `gguf:"dense"`
}
func (m *embedModel) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
hiddenStates = m.poolingType.Forward(ctx, hiddenStates)
for _, dense := range m.Dense {
hiddenStates = dense.Forward(ctx, hiddenStates)
}
hiddenStates = hiddenStates.L2Norm(ctx, 1e-12)
return hiddenStates, nil
}
func newEmbedModel(c fs.Config) (model.Model, error) {
m := &embedModel{
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
Types: c.Ints("tokenizer.ggml.token_type"),
AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
BOS: []int32{int32(c.Uint("tokenizer.ggml.bos_token_id"))},
AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
EOS: append(
[]int32{
int32(c.Uint("tokenizer.ggml.eos_token_id")),
int32(c.Uint("tokenizer.ggml.eot_token_id", 106)),
},
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
),
TextModel: newTextModel(c),
poolingType: pooling.Type(c.Uint("pooling_type", 0)),
}
return m, nil
}

View File

@@ -16,9 +16,9 @@ import (
type Model struct {
model.Base
model.SentencePieceModel
model.SentencePiece
*VisionModel `gguf:"v,vision"`
*VisionModel `gguf:"v"`
*TextModel
*MultiModalProjector `gguf:"mm"`
@@ -55,7 +55,7 @@ func (p *MultiModalProjector) Forward(ctx ml.Context, visionOutputs ml.Tensor, i
func New(c fs.Config) (model.Model, error) {
m := Model{
SentencePieceModel: model.NewSentencePieceModel(
SentencePiece: model.NewSentencePiece(
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Scores: c.Floats("tokenizer.ggml.scores"),
@@ -101,7 +101,7 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
return nil, err
}
pixelValues := ctx.Input().FromFloatSlice(f32s,
pixelValues := ctx.Input().FromFloats(f32s,
m.ImageProcessor.imageSize,
m.ImageProcessor.imageSize,
m.ImageProcessor.numChannels,
@@ -112,8 +112,8 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
return []input.Multimodal{{Tensor: visionOutputs}}, nil
}
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
var result []*input.Input
for _, inp := range inputs {
if len(inp.Multimodal) == 0 {
@@ -122,17 +122,17 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
inputMultimodal := inp.Multimodal[0].Tensor
result = append(result,
input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
input.Input{Token: 255999}, // "<start_of_image>""
input.Input{Multimodal: []input.Multimodal{{Tensor: inputMultimodal}}, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
&input.Input{Token: 108, SameBatch: inputMultimodal.Dim(1) + 3}, // "\n\n"
&input.Input{Token: 255999}, // "<start_of_image>""
&input.Input{Multimodal: []input.Multimodal{{Tensor: inputMultimodal}}, MultimodalHash: inp.MultimodalHash}, // image data is on the first placeholder
)
// add image token placeholders
result = append(result, slices.Repeat([]input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
result = append(result, slices.Repeat([]*input.Input{{Token: 0}}, inputMultimodal.Dim(1)-1)...)
result = append(result,
input.Input{Token: 256000}, // <end_of_image>
input.Input{Token: 108}, // "\n\n"
&input.Input{Token: 256000}, // <end_of_image>
&input.Input{Token: 108}, // "\n\n"
)
}
}
@@ -141,12 +141,11 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache), nil
hiddenStates := m.TextModel.Forward(ctx, batch, m.Cache)
return m.Output.Forward(ctx, hiddenStates), nil
}
func init() {
model.Register("gemma3", New)
model.Register("gemma3_embed", newEmbedModel)
}

View File

@@ -53,7 +53,10 @@ func newTextModel(c fs.Config) *TextModel {
eps: c.Float("attention.layer_norm_rms_epsilon", 1e-06),
ropeLocalBase: c.Float("rope.local.freq_base", 10000.0),
ropeGlobalBase: c.Float("rope.global.freq_base", 1000000.0),
ropeScale: c.Float("rope.freq_scale", 1.0),
ropeScale: 1,
// NOTE: the rope.scaling.factor is set incorrectly in the official QAT weights
// (8 instead of 1)
// ropeScale: c.Float("rope.scaling.factor", 1.0),
},
}
@@ -84,7 +87,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize)
q = sa.QueryNorm.Forward(ctx, q, opts.eps)
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, ropeBase, opts.ropeScale, rope.WithTypeNeoX())
q = fast.RoPE(ctx, q, positionIDs, opts.attnKeyLen, ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
if opts.largeModelScaling {
q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads)))
@@ -95,7 +98,7 @@ func (sa *TextSelfAttention) Forward(ctx ml.Context, layer int, hiddenState, pos
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize)
k = sa.KeyNorm.Forward(ctx, k, opts.eps)
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, ropeBase, opts.ropeScale, rope.WithTypeNeoX())
k = fast.RoPE(ctx, k, positionIDs, opts.attnKeyLen, ropeBase, 1./opts.ropeScale, rope.WithTypeNeoX())
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize)
@@ -113,7 +116,7 @@ func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.T
ropeBase = m.TextConfig.ropeGlobalBase
}
return fast.RoPE(ctx, key, shift, m.TextConfig.attnKeyLen, ropeBase, m.TextConfig.ropeScale, rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.TextConfig.attnKeyLen, ropeBase, 1/m.TextConfig.ropeScale, rope.WithTypeNeoX()), nil
}
type TextMLP struct {
@@ -123,7 +126,7 @@ type TextMLP struct {
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextConfig) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
@@ -159,8 +162,10 @@ func (l *TextLayer) Forward(ctx ml.Context, layer int, hiddenState, positionIDs,
return hiddenState.Add(ctx, residual)
}
func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor, batch input.Batch, cache kvcache.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
func (m *TextModel) Forward(ctx ml.Context, batch input.Batch, cache kvcache.Cache) ml.Tensor {
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs)
hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.TextConfig.hiddenSize)))
// set image embeddings
@@ -177,26 +182,28 @@ func (m *TextModel) Forward(ctx ml.Context, inputs, positions, outputs ml.Tensor
for i, layer := range m.Layers {
// gemma alternates between the sliding window (local) and causal (global)
// kv cache every 6 layers
cacheType := cacheTypeSWA
if (i+1)%gemmaGlobalCacheCount == 0 {
cacheType = cacheTypeCausal
}
cache.SetLayer(i)
wc := cache.(*kvcache.WrapperCache)
wc.SetLayerType(cacheType)
if cache != nil {
cacheType := cacheTypeSWA
if (i+1)%gemmaGlobalCacheCount == 0 {
cacheType = cacheTypeCausal
}
cache.SetLayer(i)
wc := cache.(*kvcache.WrapperCache)
wc.SetLayerType(cacheType)
if causal, ok := wc.UnderlyingCache().(*kvcache.Causal); ok {
causal.SetCausal(ctx, kvcache.CausalOptions{Except: except})
if causal, ok := wc.UnderlyingCache().(*kvcache.Causal); ok {
causal.SetCausal(ctx, kvcache.CausalOptions{Except: except})
}
}
var lastLayerOutputs ml.Tensor
if i == len(m.Layers)-1 {
lastLayerOutputs = outputs
lastLayerOutputs = batch.Outputs
}
hiddenState = layer.Forward(ctx, i, hiddenState, positions, lastLayerOutputs, cache, m.TextConfig)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return m.Output.Forward(ctx, hiddenState)
return hiddenState
}