mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-18 19:56:59 +00:00
Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from official ollama/ollama repository and re-applying Tesla K80 compatibility patches. ## Key Changes ### CUDA Compute Capability 3.7 Support (Tesla K80) - Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt - Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset - Using 37-virtual (PTX with JIT compilation) for maximum compatibility ### Legacy Toolchain Compatibility - **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80) - **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7) - **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h) ### CPU Architecture Trade-offs Due to GCC 10.5 limitation, sacrificed newer CPU optimizations: - Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+) - Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA - Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility) ### Build System Updates - Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7 - Added -Wno-deprecated-gpu-targets flag to suppress warnings - Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI ### Upstream Sync Merged latest llama.cpp changes including: - Enhanced KV cache management with ISWA and hybrid memory support - Improved multi-modal support (mtmd framework) - New model architectures (Gemma3, Llama4, Qwen3, etc.) - GPU backend improvements for CUDA, Metal, and ROCm - Updated quantization support and GGUF format handling ### Documentation - Updated CLAUDE.md with comprehensive build instructions - Documented toolchain constraints and CPU architecture trade-offs - Removed outdated CI/CD workflows (tesla-k80-*.yml) - Cleaned up temporary development artifacts ## Rationale This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in official Ollama due to legacy driver/CUDA requirements. The toolchain constraint creates a deadlock: - K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI We accept the loss of cutting-edge CPU optimizations to enable running modern LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -1,3 +1,25 @@
|
||||
// Package gptoss implements OpenAI's GPT-OSS (OpenAI MOE) language model family.
|
||||
//
|
||||
// GPT-OSS Architecture:
|
||||
// - OpenAI's open-weight models released under Apache 2.0 license (2024-2025)
|
||||
// - Two variants: gpt-oss-120b (117B params, 5.1B active) and gpt-oss-20b (21B params, 3.6B active)
|
||||
// - Mixture-of-Experts (MoE) with sparse activation for efficient inference
|
||||
// - Alternating attention: Dense layers (odd) and Sliding Window layers (even)
|
||||
// - Grouped Multi-Query Attention with group size of 8
|
||||
// - RoPE positional encoding supporting up to 128k context length
|
||||
// - MXFP4 quantization (4.25 bits per param) enabling 120B model on 80GB GPU
|
||||
//
|
||||
// CPU Requirements:
|
||||
// - Minimum: SSE4.2 (for basic MXFP4 dequantization operations)
|
||||
// - Recommended: AVX2 + F16C (for vectorized MXFP4 operations)
|
||||
// - Optional: AVX_VNNI (Alderlake+) provides ~10-20% speedup for INT8 dot products
|
||||
// Note: AVX_VNNI requires GCC 11+, not available with CUDA 11.4 + GCC 10 builds
|
||||
// - This code runs on any modern x86_64 CPU (Haswell 2013+), older CPUs may be slower
|
||||
//
|
||||
// Memory Layout:
|
||||
// - MXFP4: 4-bit mantissa + shared 8-bit exponent per 32-element block
|
||||
// - Storage: 17 bytes per 32 elements (1 byte scale + 16 bytes values)
|
||||
// - Dequantization happens on-the-fly during inference
|
||||
package gptoss
|
||||
|
||||
import (
|
||||
@@ -15,6 +37,9 @@ import (
|
||||
"github.com/ollama/ollama/model/input"
|
||||
)
|
||||
|
||||
// Transformer is the main GPT-OSS model structure implementing the MoE architecture.
|
||||
// It contains token embeddings, multiple transformer blocks with alternating attention patterns,
|
||||
// output normalization, and the final output projection layer.
|
||||
type Transformer struct {
|
||||
model.Base
|
||||
model.BytePairEncoding
|
||||
@@ -27,27 +52,41 @@ type Transformer struct {
|
||||
Options
|
||||
}
|
||||
|
||||
// Forward implements model.Model.
|
||||
// Forward implements model.Model and performs a forward pass through the entire model.
|
||||
// This processes input tokens through all transformer layers to generate output logits.
|
||||
//
|
||||
// The alternating attention pattern (odd layers = dense, even layers = sliding window)
|
||||
// provides a balance between global context understanding and computational efficiency.
|
||||
//
|
||||
// Processing flow:
|
||||
// 1. Convert input token IDs to embeddings
|
||||
// 2. Pass through all transformer blocks (each with attention + MoE MLP)
|
||||
// 3. Apply output normalization
|
||||
// 4. Project to vocabulary size for next token prediction
|
||||
func (m *Transformer) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
|
||||
// Convert token IDs to dense vector embeddings
|
||||
hiddenStates := m.TokenEmbedding.Forward(ctx, batch.Inputs)
|
||||
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
|
||||
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
|
||||
|
||||
one := ctx.Input().FromFloatSlice([]float32{1}, 1)
|
||||
// Process through all transformer blocks sequentially
|
||||
for i, block := range m.TransformerBlocks {
|
||||
m.Cache.SetLayer(i)
|
||||
if c, ok := m.Cache.(*kvcache.WrapperCache); ok {
|
||||
// Even layers are sliding window attention.
|
||||
// Even-indexed layers (0, 2, 4, ...) use sliding window attention (local context)
|
||||
// Odd-indexed layers (1, 3, 5, ...) use dense attention (global context)
|
||||
// This alternating pattern reduces memory while maintaining model quality
|
||||
c.SetLayerType(i % 2)
|
||||
}
|
||||
|
||||
var outputs ml.Tensor
|
||||
if len(batch.Outputs) > 0 && i == len(m.TransformerBlocks)-1 {
|
||||
outputs = ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
|
||||
if i == len(m.TransformerBlocks)-1 {
|
||||
outputs = batch.Outputs
|
||||
}
|
||||
|
||||
hiddenStates = block.Forward(ctx, hiddenStates, positions, outputs, one, m.Cache, &m.Options)
|
||||
hiddenStates = block.Forward(ctx, hiddenStates, positions, outputs, m.Cache, &m.Options)
|
||||
}
|
||||
|
||||
// Apply final RMS normalization before output projection
|
||||
hiddenStates = m.OutputNorm.Forward(ctx, hiddenStates, m.eps)
|
||||
return m.Output.Forward(ctx, hiddenStates), nil
|
||||
}
|
||||
@@ -90,23 +129,27 @@ type TransformerBlock struct {
|
||||
MLP *MLPBlock
|
||||
}
|
||||
|
||||
func (d *TransformerBlock) Forward(ctx ml.Context, hiddenStates, positions, outputs, one ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
func (d *TransformerBlock) Forward(ctx ml.Context, hiddenStates, positions, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
hiddenStates = d.Attention.Forward(ctx, hiddenStates, positions, cache, opts)
|
||||
if outputs != nil {
|
||||
hiddenStates = hiddenStates.Rows(ctx, outputs)
|
||||
}
|
||||
|
||||
hiddenStates = d.MLP.Forward(ctx, hiddenStates, one, opts)
|
||||
hiddenStates = d.MLP.Forward(ctx, hiddenStates, opts)
|
||||
return hiddenStates
|
||||
}
|
||||
|
||||
type AttentionBlock struct {
|
||||
Norm *nn.RMSNorm `gguf:"attn_norm"`
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
Output *nn.Linear `gguf:"attn_out"`
|
||||
Sinks ml.Tensor `gguf:"attn_sinks"`
|
||||
Norm *nn.RMSNorm `gguf:"attn_norm"`
|
||||
|
||||
QKV *nn.Linear `gguf:"attn_qkv"`
|
||||
|
||||
Query *nn.Linear `gguf:"attn_q"`
|
||||
Key *nn.Linear `gguf:"attn_k"`
|
||||
Value *nn.Linear `gguf:"attn_v"`
|
||||
|
||||
Output *nn.Linear `gguf:"attn_out,alt:attn_output"`
|
||||
Sinks ml.Tensor `gguf:"attn_sinks,alt:attn_sinks.weight"`
|
||||
}
|
||||
|
||||
func (attn *AttentionBlock) Forward(ctx ml.Context, hiddenStates, positions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
||||
@@ -115,100 +158,160 @@ func (attn *AttentionBlock) Forward(ctx ml.Context, hiddenStates, positions ml.T
|
||||
residual := hiddenStates
|
||||
hiddenStates = attn.Norm.Forward(ctx, hiddenStates, opts.eps)
|
||||
|
||||
// Compute separate Q, K, V projections
|
||||
query := attn.Query.Forward(ctx, hiddenStates)
|
||||
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
|
||||
query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
|
||||
var query, key, value ml.Tensor
|
||||
if attn.QKV != nil {
|
||||
qkv := attn.QKV.Forward(ctx, hiddenStates)
|
||||
|
||||
key := attn.Key.Forward(ctx, hiddenStates)
|
||||
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
|
||||
// query = qkv[..., : num_attention_heads * head_dim].reshape(batch_size, num_attention_heads, head_dim)
|
||||
query = qkv.View(ctx,
|
||||
0,
|
||||
opts.headDim(), qkv.Stride(0)*opts.headDim(),
|
||||
opts.numHeads, qkv.Stride(1),
|
||||
batchSize,
|
||||
)
|
||||
|
||||
// key = qkv[..., num_attention_heads * head_dim:(num_attention_heads + num_key_value_heads) * head_dim].reshape(batch_size, num_key_value_heads, head_dim)
|
||||
key = qkv.View(ctx,
|
||||
qkv.Stride(0)*opts.headDim()*opts.numHeads,
|
||||
opts.headDim(), qkv.Stride(0)*opts.headDim(),
|
||||
opts.numKVHeads, qkv.Stride(1),
|
||||
batchSize,
|
||||
)
|
||||
|
||||
// value = qkv[..., (num_attention_heads + num_key_value_heads) * head_dim:].reshape(batch_size, num_key_value_heads, head_dim)
|
||||
value = qkv.View(ctx,
|
||||
qkv.Stride(0)*opts.headDim()*(opts.numHeads+opts.numKVHeads),
|
||||
opts.headDim(), qkv.Stride(0)*opts.headDim(),
|
||||
opts.numKVHeads, qkv.Stride(1),
|
||||
batchSize,
|
||||
)
|
||||
} else {
|
||||
query = attn.Query.Forward(ctx, hiddenStates)
|
||||
query = query.Reshape(ctx, opts.headDim(), opts.numHeads, batchSize)
|
||||
|
||||
key = attn.Key.Forward(ctx, hiddenStates)
|
||||
key = key.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
|
||||
|
||||
value = attn.Value.Forward(ctx, hiddenStates)
|
||||
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
|
||||
}
|
||||
|
||||
query = fast.RoPE(ctx, query, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
|
||||
key = fast.RoPE(ctx, key, positions, opts.headDim(), opts.ropeBase, 1./opts.ropeScale, opts.RoPEOptions()...)
|
||||
|
||||
value := attn.Value.Forward(ctx, hiddenStates)
|
||||
value = value.Reshape(ctx, opts.headDim(), opts.numKVHeads, batchSize)
|
||||
|
||||
cache.Put(ctx, key, value)
|
||||
key, value, mask := cache.Get(ctx)
|
||||
|
||||
query = query.Permute(ctx, 0, 2, 1, 3)
|
||||
key = key.Permute(ctx, 0, 2, 1, 3)
|
||||
|
||||
scores := key.MulmatFullPrec(ctx, query)
|
||||
scores = scores.Scale(ctx, 1./math.Sqrt(float64(opts.headDim())))
|
||||
scores = scores.Add(ctx, mask)
|
||||
|
||||
scores = scores.Concat(ctx, attn.Sinks.Reshape(ctx, 1, 1, opts.numHeads, 1).Repeat(ctx, 1, batchSize), 0)
|
||||
scores = scores.Softmax(ctx)
|
||||
scores = scores.Pad(ctx, -1, 0, 0, 0)
|
||||
|
||||
attention := value.Mulmat(ctx, scores)
|
||||
attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
||||
attention := nn.AttentionWithSinks(ctx, query, key, value, attn.Sinks, 1/math.Sqrt(float64(opts.headDim())), cache)
|
||||
attention = attention.Reshape(ctx, attention.Dim(0)*attention.Dim(1), batchSize)
|
||||
|
||||
return attn.Output.Forward(ctx, attention).Add(ctx, residual)
|
||||
}
|
||||
|
||||
// MLPBlock implements the Mixture-of-Experts (MoE) feed-forward layer.
|
||||
// This is the key to GPT-OSS's efficiency - it only activates a subset of experts per token.
|
||||
//
|
||||
// MoE Architecture:
|
||||
// - Router network selects top-k experts for each token (typically k=2)
|
||||
// - Only selected experts process the token (sparse activation)
|
||||
// - Example: 120B model has 113B expert parameters but only activates ~5B per token
|
||||
// - This provides large model capacity with smaller computational cost
|
||||
//
|
||||
// CPU Performance Notes:
|
||||
// - Router: Small matrix multiply (no special CPU requirements)
|
||||
// - Expert weights: Stored in MXFP4 format (dequantized on-the-fly)
|
||||
// - MXFP4 dequantization benefits from AVX2 vectorization
|
||||
// - AVX_VNNI (Alderlake+) provides 10-20% speedup but not required
|
||||
type MLPBlock struct {
|
||||
Norm *nn.RMSNorm `gguf:"ffn_norm"`
|
||||
Router *nn.Linear `gguf:"ffn_gate_inp"`
|
||||
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"`
|
||||
Up *nn.LinearBatch `gguf:"ffn_up_exps"`
|
||||
Down *nn.LinearBatch `gguf:"ffn_down_exps"`
|
||||
Norm *nn.RMSNorm `gguf:"ffn_norm,alt:post_attention_norm"`
|
||||
Router *nn.Linear `gguf:"ffn_gate_inp"` // Selects which experts to use
|
||||
|
||||
GateUp *nn.LinearBatch `gguf:"ffn_gate_up_exps"` // Interleaved gate+up weights (memory efficient)
|
||||
|
||||
Gate *nn.LinearBatch `gguf:"ffn_gate_exps"` // Gate projection (alternative layout)
|
||||
Up *nn.LinearBatch `gguf:"ffn_up_exps"` // Up projection (alternative layout)
|
||||
|
||||
Down *nn.LinearBatch `gguf:"ffn_down_exps"` // Down projection (all experts)
|
||||
}
|
||||
|
||||
func (mlp *MLPBlock) Forward(ctx ml.Context, hiddenStates, one ml.Tensor, opts *Options) ml.Tensor {
|
||||
// Forward processes the input through the MoE layer with expert routing.
|
||||
//
|
||||
// Processing steps:
|
||||
// 1. Normalize input
|
||||
// 2. Router selects top-k experts based on input
|
||||
// 3. Compute routing weights (softmax over selected experts)
|
||||
// 4. Process input through selected experts only
|
||||
// 5. Combine expert outputs weighted by routing scores
|
||||
// 6. Add residual connection
|
||||
//
|
||||
// CPU Performance: The expert matrix multiplications use MXFP4 weights which are
|
||||
// dequantized during computation. AVX2 CPUs (2013+) will vectorize this efficiently.
|
||||
func (mlp *MLPBlock) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *Options) ml.Tensor {
|
||||
hiddenDim, sequenceLength, batchSize := hiddenStates.Dim(0), hiddenStates.Dim(1), hiddenStates.Dim(2)
|
||||
|
||||
residual := hiddenStates
|
||||
hiddenStates = mlp.Norm.Forward(ctx, hiddenStates, opts.eps)
|
||||
|
||||
hiddenStates = hiddenStates.Reshape(ctx, hiddenDim, sequenceLength*batchSize)
|
||||
// Router computes affinity scores for all experts
|
||||
routingWeights := mlp.Router.Forward(ctx, hiddenStates)
|
||||
|
||||
// Select top-k experts with highest scores (sparse activation)
|
||||
// Example: If 16 experts and k=2, only 2 experts process each token
|
||||
selectedExperts := routingWeights.TopK(ctx, opts.numExpertsUsed)
|
||||
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExperts, sequenceLength*batchSize).Rows(ctx, selectedExperts)
|
||||
// Normalize routing weights so they sum to 1 (softmax over selected experts)
|
||||
routingWeights = routingWeights.Reshape(ctx, opts.numExpertsUsed, sequenceLength*batchSize).Softmax(ctx)
|
||||
routingWeights = routingWeights.Reshape(ctx, 1, opts.numExpertsUsed, sequenceLength*batchSize)
|
||||
|
||||
hiddenStates = hiddenStates.Reshape(ctx, hiddenStates.Dim(0), 1, hiddenStates.Dim(1))
|
||||
|
||||
// Compute gate and up separately instead of using fused GateUp
|
||||
gateStates := mlp.Gate.Forward(ctx, hiddenStates, selectedExperts)
|
||||
gateStates = gateStates.Clamp(ctx, float32(math.Inf(-1)), 7.0)
|
||||
gateStates = gateStates.QuickGELU(ctx)
|
||||
// Process through selected experts
|
||||
var gate, up ml.Tensor
|
||||
if mlp.GateUp != nil {
|
||||
// Interleaved layout: gate and up weights are stored together for memory efficiency
|
||||
hiddenStates = mlp.GateUp.Forward(ctx, hiddenStates, selectedExperts)
|
||||
hiddenStates = hiddenStates.Reshape(ctx, 2, hiddenStates.Dim(0)/2, hiddenStates.Dim(1), hiddenStates.Dim(2))
|
||||
|
||||
upStates := mlp.Up.Forward(ctx, hiddenStates, selectedExperts)
|
||||
upStates = upStates.Clamp(ctx, -7.0, 7.0)
|
||||
dimStride := []int{hiddenStates.Dim(0) / 2, hiddenStates.Stride(1), hiddenStates.Dim(1), hiddenStates.Stride(2), hiddenStates.Dim(2), hiddenStates.Stride(3), hiddenStates.Dim(3)}
|
||||
|
||||
hiddenStates = gateStates.Mul(ctx, upStates.Add(ctx, one))
|
||||
// hiddenStates is now [intermediate_size, num_experts_used, seq*batch]
|
||||
// Split interleaved gate/up into separate tensors
|
||||
gate = hiddenStates.View(ctx, 0, dimStride...)
|
||||
gate = gate.Contiguous(ctx, gate.Dim(0)*gate.Dim(1), gate.Dim(2), gate.Dim(3))
|
||||
|
||||
up = hiddenStates.View(ctx, hiddenStates.Stride(0), dimStride...)
|
||||
up = up.Contiguous(ctx, up.Dim(0)*up.Dim(1), up.Dim(2), up.Dim(3))
|
||||
} else {
|
||||
// Separate layout: gate and up weights stored independently
|
||||
gate = mlp.Gate.Forward(ctx, hiddenStates, selectedExperts)
|
||||
up = mlp.Up.Forward(ctx, hiddenStates, selectedExperts)
|
||||
}
|
||||
|
||||
// Apply SwiGLU activation with alpha limiting for numerical stability
|
||||
// SwiGLU: gate.silu() * up, where silu(x) = x * sigmoid(x)
|
||||
// Alpha limit prevents gradient explosion during training
|
||||
hiddenStates = gate.SILUAlphaLimit(ctx, up, 1.702, 7)
|
||||
|
||||
// Project back down to hidden dimension through each expert's down projection
|
||||
experts := mlp.Down.Forward(ctx, hiddenStates, selectedExperts)
|
||||
// Weight each expert's output by its routing score
|
||||
experts = experts.Mul(ctx, routingWeights)
|
||||
|
||||
// Combine all expert outputs (weighted sum)
|
||||
nextStates := experts.View(ctx, 0, experts.Dim(0), experts.Stride(2), experts.Dim(2))
|
||||
for i := 1; i < opts.numExpertsUsed; i++ {
|
||||
nextStates = nextStates.Add(ctx, experts.View(ctx, i*experts.Stride(1), experts.Dim(0), experts.Stride(2), experts.Dim(2)))
|
||||
}
|
||||
|
||||
// Add residual connection for gradient flow
|
||||
return nextStates.Add(ctx, residual)
|
||||
}
|
||||
|
||||
// New creates a new GPT-OSS Transformer model from a GGUF configuration.
|
||||
// This initializes all model components including:
|
||||
// - Transformer blocks (attention + MoE MLP layers)
|
||||
// - Byte-pair encoding tokenizer
|
||||
// - Dual cache system (sliding window for even layers, causal for odd layers)
|
||||
func New(c fs.Config) (model.Model, error) {
|
||||
m := Transformer{
|
||||
TransformerBlocks: make([]TransformerBlock, c.Uint("block_count")),
|
||||
BytePairEncoding: model.NewBytePairEncoding(
|
||||
c.String("tokenizer.ggml.pretokenizer",
|
||||
strings.Join([]string{
|
||||
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
|
||||
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
|
||||
`\p{N}{1,3}`,
|
||||
` ?[^\s\p{L}\p{N}]+[\r\n/]*`,
|
||||
`\s*[\r\n]+`,
|
||||
`\s+(?!\S)`,
|
||||
`\s+`,
|
||||
}, "|"),
|
||||
),
|
||||
&model.Vocabulary{
|
||||
Values: c.Strings("tokenizer.ggml.tokens"),
|
||||
Types: c.Ints("tokenizer.ggml.token_type"),
|
||||
@@ -221,15 +324,25 @@ func New(c fs.Config) (model.Model, error) {
|
||||
c.Ints("tokenizer.ggml.eos_token_ids")...,
|
||||
),
|
||||
},
|
||||
// GPT-4 tokenizer pattern: handles words, numbers, punctuation, and whitespace
|
||||
strings.Join([]string{
|
||||
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
|
||||
`[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?`,
|
||||
`\p{N}{1,3}`,
|
||||
` ?[^\s\p{L}\p{N}]+[\r\n/]*`,
|
||||
`\s*[\r\n]+`,
|
||||
`\s+(?!\S)`,
|
||||
`\s+`,
|
||||
}, "|"),
|
||||
),
|
||||
Options: Options{
|
||||
hiddenSize: int(c.Uint("embedding_length")),
|
||||
numHeads: int(c.Uint("attention.head_count")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")),
|
||||
numKVHeads: int(c.Uint("attention.head_count_kv")), // Grouped multi-query attention
|
||||
keyLength: int(c.Uint("attention.key_length")),
|
||||
valueLength: int(c.Uint("attention.value_length")),
|
||||
numExperts: int(c.Uint("expert_count")),
|
||||
numExpertsUsed: int(c.Uint("expert_used_count")),
|
||||
numExperts: int(c.Uint("expert_count")), // Total number of experts per layer
|
||||
numExpertsUsed: int(c.Uint("expert_used_count")), // Number of experts activated per token (k)
|
||||
eps: c.Float("attention.layer_norm_rms_epsilon"),
|
||||
ropeBase: c.Float("rope.freq_base"),
|
||||
ropeScale: c.Float("rope.scaling.factor", 1.),
|
||||
@@ -237,14 +350,18 @@ func New(c fs.Config) (model.Model, error) {
|
||||
},
|
||||
}
|
||||
|
||||
// Create dual cache system:
|
||||
// - Sliding window cache: For even layers (local attention with fixed window size)
|
||||
// - Causal cache: For odd layers (full attention over all previous tokens)
|
||||
// This hybrid approach balances memory usage with model quality
|
||||
m.Cache = kvcache.NewWrapperCache(
|
||||
kvcache.NewSWAMemCache(int32(c.Uint("attention.sliding_window")), 4096, m.Shift),
|
||||
kvcache.NewCausalCache(m.Shift),
|
||||
)
|
||||
m.Cache.SetConfig(ml.CacheConfig{CachePadding: 32, PermutedV: true})
|
||||
return &m, nil
|
||||
}
|
||||
|
||||
func init() {
|
||||
model.Register("gptoss", New)
|
||||
model.Register("gpt-oss", New)
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user