Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support

This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Shang Chieh Tseng
2025-11-05 14:03:05 +08:00
parent fabe2c5cb7
commit ef14fb5b26
817 changed files with 241634 additions and 70888 deletions

View File

@@ -18,7 +18,7 @@ type Model struct {
model.BytePairEncoding
*TextModel
*VisionModel `gguf:"v,vision"`
*VisionModel `gguf:"v"`
ImageProcessor
}
@@ -29,7 +29,6 @@ var _ model.MultimodalProcessor = (*Model)(nil)
func New(c fs.Config) (model.Model, error) {
m := &Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Ints("tokenizer.ggml.token_type"),
@@ -42,6 +41,7 @@ func New(c fs.Config) (model.Model, error) {
c.Ints("tokenizer.ggml.eos_token_ids")...,
),
},
`(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`,
),
TextModel: NewTextModel(c),
VisionModel: newVisionModel(c),
@@ -69,7 +69,7 @@ func (m *Model) PixelValues(ctx ml.Context, multimodalData []byte) (ml.Tensor, *
m.ImageProcessor.patchSize * m.ImageProcessor.patchSize
numPatches := grid.Temporal * grid.Height * grid.Width
pixelValues := ctx.Input().FromFloatSlice(f32s, patchDim, numPatches)
pixelValues := ctx.Input().FromFloats(f32s, patchDim, numPatches)
return pixelValues, grid, nil
}
@@ -89,8 +89,8 @@ func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) ([]input
}
// PostTokenize arranges Qwen-2.5-VL's inputs for the forward pass
func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
var result []input.Input
func (m *Model) PostTokenize(inputs []*input.Input) ([]*input.Input, error) {
var result []*input.Input
var (
imageToken int32 = 151655
@@ -112,16 +112,16 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
return nil, fmt.Errorf("failed to encode image prompt: %w", err)
}
for i := range pre {
result = append(result, input.Input{Token: pre[i]})
result = append(result, &input.Input{Token: pre[i]})
}
patchesPerChunk := inp.Multimodal[0].Tensor.Dim(1)
// First add the vision start token
result = append(result, input.Input{Token: visionStartToken})
result = append(result, &input.Input{Token: visionStartToken})
// Add the image token with the multimodal tensor data at the first position
result = append(result, input.Input{
result = append(result, &input.Input{
Token: imageToken,
Multimodal: inp.Multimodal,
MultimodalHash: inp.MultimodalHash,
@@ -129,9 +129,9 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
})
// Add the placeholder tokens for the remaining positions (tokensPerGrid-1)
result = append(result, slices.Repeat([]input.Input{{Token: imageToken}}, patchesPerChunk-1)...)
result = append(result, slices.Repeat([]*input.Input{{Token: imageToken}}, patchesPerChunk-1)...)
result = append(result, input.Input{Token: visionEndToken})
result = append(result, &input.Input{Token: visionEndToken})
}
}
@@ -139,10 +139,9 @@ func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
}
func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
positions := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
outputs := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
positions := ctx.Input().FromInts(batch.Positions, len(batch.Positions))
return m.TextModel.Forward(ctx, batch.Inputs, positions, outputs, batch, m.Cache)
return m.TextModel.Forward(ctx, batch.Inputs, positions, batch.Outputs, batch, m.Cache)
}
func init() {

View File

@@ -38,7 +38,7 @@ func NewTextModel(c fs.Config) *TextModel {
originalContextLength: int(c.Uint("context_length", 128000)),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeScale: c.Float("rope.scaling.factor", 1),
},
}
@@ -60,11 +60,11 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
q = fast.RoPE(ctx, q, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
k = fast.RoPE(ctx, k, positionIDs, opts.ropeDim, opts.ropeBase, 1./opts.ropeScale, rope.WithOriginalContextLength(opts.originalContextLength), rope.WithTypeNeoX())
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
@@ -78,7 +78,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
// Shift applies rotary position embeddings to the key tensor for causal attention caching
func (m *TextModel) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, m.ropeScale, rope.WithOriginalContextLength(m.originalContextLength), rope.WithTypeNeoX()), nil
return fast.RoPE(ctx, key, shift, m.ropeDim, m.ropeBase, 1./m.ropeScale, rope.WithOriginalContextLength(m.originalContextLength), rope.WithTypeNeoX()), nil
}
// MLP implements the feed-forward network component with SwiGLU activation
@@ -90,7 +90,7 @@ type MLP struct {
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
// Apply SwiGLU activation gating
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx, mlp.Up.Forward(ctx, hiddenState))
// Project back to hidden dimension
return mlp.Down.Forward(ctx, hiddenState)
}

View File

@@ -43,7 +43,7 @@ func blockDiagonalMask(ctx ml.Context, seqLength int, bounds []int, numHeads int
}
}
mask := ctx.Input().FromFloatSlice(flat, seqLength, seqLength)
mask := ctx.Input().FromFloats(flat, seqLength, seqLength)
// Reshape to match [seqLength, seqLength, 1] for broadcasting
mask = mask.Reshape(ctx, seqLength, seqLength, 1)
@@ -100,8 +100,7 @@ type VisionMLP struct {
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenStates ml.Tensor, opts *VisionModelOptions) ml.Tensor {
// Using activation as specified in config (likely GELU or SiLU/Swish)
gateOutput := mlp.Gate.Forward(ctx, hiddenStates)
upOutput := mlp.Up.Forward(ctx, hiddenStates)
hiddenStates = gateOutput.SILU(ctx).Mul(ctx, upOutput)
hiddenStates = gateOutput.SILU(ctx, mlp.Up.Forward(ctx, hiddenStates))
return mlp.Down.Forward(ctx, hiddenStates)
}
@@ -300,7 +299,7 @@ func (m *VisionModel) WindowIndex(ctx ml.Context, grid *Grid) (ml.Tensor, []int)
}
}
t := ctx.Input().FromIntSlice(index, len(index))
t := ctx.Input().FromInts(index, len(index))
return t, bounds
}
@@ -320,7 +319,7 @@ func (m *VisionModel) PositionalEmbedding(ctx ml.Context, grid *Grid) ml.Tensor
freqVals[i*freq+j] = float32(i) / float32(math.Pow(theta, float64(j*2)/float64(dim)))
}
}
freqs := ctx.Input().FromFloatSlice(freqVals, freq, maxGridSize)
freqs := ctx.Input().FromFloats(freqVals, freq, maxGridSize)
// Create position coordinates (y,x pairs) for the grid
// In PyTorch: Equivalent to generating position ids with torch.arange()
@@ -330,7 +329,7 @@ func (m *VisionModel) PositionalEmbedding(ctx ml.Context, grid *Grid) ml.Tensor
coords = append(coords, int32(y), int32(x))
}
}
pos := ctx.Input().FromIntSlice(coords, 2, grid.Width, grid.Height)
pos := ctx.Input().FromInts(coords, 2, grid.Width, grid.Height)
// Reshape and permute positions to match spatial merging pattern
pos = pos.Reshape(ctx, 2, grid.Width, merge, grid.Height/merge)

View File

@@ -79,6 +79,8 @@ type Grid struct {
}
func (p *ImageProcessor) ProcessImage(img image.Image) ([]float32, *Grid, error) {
img = imageproc.Composite(img)
origWidth := img.Bounds().Dx()
origHeight := img.Bounds().Dy()