mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-19 04:07:01 +00:00
Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from official ollama/ollama repository and re-applying Tesla K80 compatibility patches. ## Key Changes ### CUDA Compute Capability 3.7 Support (Tesla K80) - Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt - Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset - Using 37-virtual (PTX with JIT compilation) for maximum compatibility ### Legacy Toolchain Compatibility - **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80) - **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7) - **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h) ### CPU Architecture Trade-offs Due to GCC 10.5 limitation, sacrificed newer CPU optimizations: - Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+) - Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA - Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility) ### Build System Updates - Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7 - Added -Wno-deprecated-gpu-targets flag to suppress warnings - Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI ### Upstream Sync Merged latest llama.cpp changes including: - Enhanced KV cache management with ISWA and hybrid memory support - Improved multi-modal support (mtmd framework) - New model architectures (Gemma3, Llama4, Qwen3, etc.) - GPU backend improvements for CUDA, Metal, and ROCm - Updated quantization support and GGUF format handling ### Documentation - Updated CLAUDE.md with comprehensive build instructions - Documented toolchain constraints and CPU architecture trade-offs - Removed outdated CI/CD workflows (tesla-k80-*.yml) - Cleaned up temporary development artifacts ## Rationale This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in official Ollama due to legacy driver/CUDA requirements. The toolchain constraint creates a deadlock: - K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI We accept the loss of cutting-edge CPU optimizations to enable running modern LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
196
model/models/qwen3vl/imageprocessor.go
Normal file
196
model/models/qwen3vl/imageprocessor.go
Normal file
@@ -0,0 +1,196 @@
|
||||
package qwen3vl
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"image"
|
||||
"math"
|
||||
|
||||
"github.com/ollama/ollama/fs"
|
||||
"github.com/ollama/ollama/ml"
|
||||
"github.com/ollama/ollama/model/imageproc"
|
||||
)
|
||||
|
||||
// ImageProcessor contains configuration for the Qwen 3 VL image processing
|
||||
type ImageProcessor struct {
|
||||
numChannels int
|
||||
patchSize int
|
||||
temporalPatchSize int
|
||||
mergeSize int
|
||||
shortestEdge int
|
||||
longestEdge int
|
||||
factor int
|
||||
rescaleFactor float32
|
||||
imageMean []float32
|
||||
imageStd []float32
|
||||
}
|
||||
|
||||
// newImageProcessor creates a new image processor with default values
|
||||
func newImageProcessor(c fs.Config) ImageProcessor {
|
||||
patchSize := int(c.Uint("vision.patch_size", 14))
|
||||
mergeSize := int(c.Uint("vision.spatial_merge_size", 2))
|
||||
|
||||
return ImageProcessor{
|
||||
numChannels: int(c.Uint("vision.num_channels", 3)), // not set
|
||||
patchSize: patchSize,
|
||||
temporalPatchSize: 2,
|
||||
mergeSize: mergeSize,
|
||||
shortestEdge: int(c.Uint("vision.shortest_edge", 64<<10)),
|
||||
// FIXME(mxyng): the model defined longest edge (16M) is too large for the default
|
||||
// context length of 8K and will panic. Adjusting to 2M for now.
|
||||
// longestEdge: int(c.Uint("vision.longest_edge", 16<<20)),
|
||||
longestEdge: 2 << 20,
|
||||
factor: patchSize * mergeSize,
|
||||
rescaleFactor: 1.0 / 255.0,
|
||||
imageMean: c.Floats("vision.image_mean", imageproc.ImageNetStandardMean[:]),
|
||||
imageStd: c.Floats("vision.image_std", imageproc.ImageNetStandardSTD[:]),
|
||||
}
|
||||
}
|
||||
|
||||
// SmartResize implements the smart resize algorithm
|
||||
func (p *ImageProcessor) SmartResize(height, width int) (int, int) {
|
||||
factor := p.factor
|
||||
|
||||
if height < factor || width < factor {
|
||||
panic(fmt.Sprintf("height:%d or width:%d must be larger than factor:%d", height, width, factor))
|
||||
} else if aspectRatio := max(height, width) / min(height, width); aspectRatio > 200 {
|
||||
panic(fmt.Sprintf("absolute aspect ratio must be smaller than 200, got %v", aspectRatio))
|
||||
}
|
||||
|
||||
round := func(x float64) int { return int(math.RoundToEven(x)) }
|
||||
|
||||
hBar := round(float64(height)/float64(factor)) * factor
|
||||
wBar := round(float64(width)/float64(factor)) * factor
|
||||
|
||||
if hBar*wBar > p.longestEdge {
|
||||
beta := math.Sqrt(float64(height*width) / float64(p.longestEdge))
|
||||
|
||||
hBar = int(math.Floor(float64(height)/beta/float64(factor))) * factor
|
||||
wBar = int(math.Floor(float64(width)/beta/float64(factor))) * factor
|
||||
} else if hBar*wBar < p.shortestEdge {
|
||||
beta := math.Sqrt(float64(p.shortestEdge) / float64(height*width))
|
||||
|
||||
hBar = int(math.Ceil(float64(height)*beta/float64(factor))) * factor
|
||||
wBar = int(math.Ceil(float64(width)*beta/float64(factor))) * factor
|
||||
}
|
||||
|
||||
return hBar, wBar
|
||||
}
|
||||
|
||||
type Grid struct {
|
||||
Height int
|
||||
Width int
|
||||
Temporal int
|
||||
}
|
||||
|
||||
func (p *ImageProcessor) ProcessImage(ctx ml.Context, img image.Image) (ml.Tensor, *Grid, error) {
|
||||
img = imageproc.Composite(img)
|
||||
|
||||
origWidth := img.Bounds().Dx()
|
||||
origHeight := img.Bounds().Dy()
|
||||
|
||||
// Calculate smart resize dimensions
|
||||
resizedHeight, resizedWidth := p.SmartResize(origHeight, origWidth)
|
||||
|
||||
// Resize image using existing functions
|
||||
resizedImg := imageproc.Resize(img, image.Point{X: resizedWidth, Y: resizedHeight}, imageproc.ResizeBilinear)
|
||||
|
||||
normalizedPixels := imageproc.Normalize(
|
||||
resizedImg,
|
||||
[3]float32{p.imageMean[0], p.imageMean[1], p.imageMean[2]},
|
||||
[3]float32{p.imageStd[0], p.imageStd[1], p.imageStd[2]},
|
||||
true, // rescale
|
||||
true, // channelFirst
|
||||
)
|
||||
|
||||
// Calculate grid dimensions
|
||||
grid := &Grid{
|
||||
Height: resizedHeight / p.patchSize,
|
||||
Width: resizedWidth / p.patchSize,
|
||||
Temporal: 1, // For single images, temporal dimension is 1
|
||||
}
|
||||
|
||||
patches, err := p.createPatches(normalizedPixels, resizedHeight, resizedWidth, grid)
|
||||
if err != nil {
|
||||
return nil, nil, fmt.Errorf("failed to create patches: %v", err)
|
||||
}
|
||||
|
||||
patchDim := p.numChannels * p.temporalPatchSize *
|
||||
p.patchSize * p.patchSize
|
||||
numPatches := grid.Temporal * grid.Height * grid.Width
|
||||
|
||||
pixelValues := ctx.Input().FromFloats(patches, patchDim, numPatches)
|
||||
|
||||
// Return patches and grid dimensions
|
||||
return pixelValues, grid, nil
|
||||
}
|
||||
|
||||
func (p *ImageProcessor) createPatches(pixels []float32, height, width int, grid *Grid) ([]float32, error) {
|
||||
channels := p.numChannels
|
||||
patchSize := p.patchSize
|
||||
mergeSize := p.mergeSize
|
||||
temporalPatchSize := p.temporalPatchSize
|
||||
|
||||
// Calculate output dimensions
|
||||
numPatches := grid.Temporal * grid.Height * grid.Width
|
||||
patchDim := channels * temporalPatchSize * patchSize * patchSize
|
||||
|
||||
result := make([]float32, numPatches*patchDim)
|
||||
patchIndex := 0
|
||||
|
||||
// Single temporal frame handling (copies to all frames)
|
||||
for range grid.Temporal {
|
||||
for h := 0; h < grid.Height; h += mergeSize {
|
||||
for w := 0; w < grid.Width; w += mergeSize {
|
||||
// Handle the 2x2 merged patches
|
||||
for mh := range mergeSize {
|
||||
for mw := range mergeSize {
|
||||
baseOffset := patchIndex * patchDim
|
||||
|
||||
// Extract patch data for first temporal frame
|
||||
for c := range channels {
|
||||
channelOffset := baseOffset + (c * temporalPatchSize * patchSize * patchSize)
|
||||
|
||||
for py := range patchSize {
|
||||
for px := range patchSize {
|
||||
// Calculate source pixel coordinates
|
||||
y := (h+mh)*patchSize + py
|
||||
x := (w+mw)*patchSize + px
|
||||
|
||||
// Source index in input tensor (CHW format)
|
||||
srcIdx := c*height*width + y*width + x
|
||||
|
||||
// Destination index in first temporal frame
|
||||
dstIdx := channelOffset + (py * patchSize) + px
|
||||
|
||||
if srcIdx < len(pixels) && dstIdx < len(result) {
|
||||
result[dstIdx] = pixels[srcIdx]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Copy first temporal frame to all other frames
|
||||
if temporalPatchSize > 1 {
|
||||
for c := range channels {
|
||||
channelOffset := baseOffset + (c * temporalPatchSize * patchSize * patchSize)
|
||||
firstFrameOffset := channelOffset
|
||||
frameSize := patchSize * patchSize
|
||||
|
||||
// Copy first frame to all other frames
|
||||
for tp := 1; tp < temporalPatchSize; tp++ {
|
||||
currentFrameOffset := channelOffset + (tp * frameSize)
|
||||
copy(result[currentFrameOffset:currentFrameOffset+frameSize],
|
||||
result[firstFrameOffset:firstFrameOffset+frameSize])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
patchIndex++
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return result, nil
|
||||
}
|
||||
Reference in New Issue
Block a user