Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support

This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Shang Chieh Tseng
2025-11-05 14:03:05 +08:00
parent fabe2c5cb7
commit ef14fb5b26
817 changed files with 241634 additions and 70888 deletions

76
model/parsers/parsers.go Normal file
View File

@@ -0,0 +1,76 @@
package parsers
import (
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/harmony"
)
type Parser interface {
// Init initializes the parser with tools and optional last message for chat prefill
// Returns processed tools if the parser needs to modify them (e.g., harmony renames them)
Init(tools []api.Tool, lastMessage *api.Message) []api.Tool
// Add processes streamed content and returns parsed content, thinking, and tool calls
// The done flag indicates if this is the last chunk (used for draining accumulators)
Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error)
HasToolSupport() bool
HasThinkingSupport() bool
}
type ParserConstructor func() Parser
type ParserRegistry struct {
constructors map[string]ParserConstructor
}
func (r *ParserRegistry) Register(name string, constructor ParserConstructor) {
r.constructors[name] = constructor
}
var registry = ParserRegistry{
constructors: make(map[string]ParserConstructor),
}
func Register(name string, constructor ParserConstructor) {
registry.Register(name, constructor)
}
func ParserForName(name string) Parser {
if parser, ok := registry.constructors[name]; ok {
return parser()
}
switch name {
case "qwen3-coder":
parser := &Qwen3CoderParser{}
return parser
case "qwen3-vl-instruct":
parser := &Qwen3VLParser{hasThinkingSupport: false}
return parser
case "qwen3-vl-thinking":
parser := &Qwen3VLParser{hasThinkingSupport: true}
return parser
case "passthrough":
return &PassthroughParser{}
case "harmony":
return harmony.NewHarmonyMessageHandler()
default:
return nil
}
}
type PassthroughParser struct{}
func (p *PassthroughParser) Init(tools []api.Tool, lastMessage *api.Message) []api.Tool {
return tools // passthrough doesn't modify tools
}
func (p *PassthroughParser) Add(s string, done bool) (content string, thinking string, calls []api.ToolCall, err error) {
return s, "", nil, nil
}
func (p *PassthroughParser) HasToolSupport() bool {
return false
}
func (p *PassthroughParser) HasThinkingSupport() bool {
return false
}