mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-14 17:57:06 +00:00
Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from official ollama/ollama repository and re-applying Tesla K80 compatibility patches. ## Key Changes ### CUDA Compute Capability 3.7 Support (Tesla K80) - Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt - Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset - Using 37-virtual (PTX with JIT compilation) for maximum compatibility ### Legacy Toolchain Compatibility - **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80) - **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7) - **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h) ### CPU Architecture Trade-offs Due to GCC 10.5 limitation, sacrificed newer CPU optimizations: - Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+) - Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA - Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility) ### Build System Updates - Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7 - Added -Wno-deprecated-gpu-targets flag to suppress warnings - Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI ### Upstream Sync Merged latest llama.cpp changes including: - Enhanced KV cache management with ISWA and hybrid memory support - Improved multi-modal support (mtmd framework) - New model architectures (Gemma3, Llama4, Qwen3, etc.) - GPU backend improvements for CUDA, Metal, and ROCm - Updated quantization support and GGUF format handling ### Documentation - Updated CLAUDE.md with comprehensive build instructions - Documented toolchain constraints and CPU architecture trade-offs - Removed outdated CI/CD workflows (tesla-k80-*.yml) - Cleaned up temporary development artifacts ## Rationale This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in official Ollama due to legacy driver/CUDA requirements. The toolchain constraint creates a deadlock: - K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI We accept the loss of cutting-edge CPU optimizations to enable running modern LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -17,7 +17,7 @@ type ImageContext struct {
|
||||
// mu is required to be held when generating embeddings or accessing the cache
|
||||
mu sync.Mutex
|
||||
|
||||
clip *llama.ClipContext
|
||||
mtmd *llama.MtmdContext
|
||||
|
||||
// cache of images to embeddings
|
||||
images []imageCache
|
||||
@@ -32,7 +32,7 @@ func NewImageContext(llamaContext *llama.Context, modelPath string) (*ImageConte
|
||||
|
||||
var c ImageContext
|
||||
if arch == "clip" {
|
||||
c.clip, err = llama.NewClipContext(llamaContext, modelPath)
|
||||
c.mtmd, err = llama.NewMtmdContext(llamaContext, modelPath)
|
||||
} else {
|
||||
return nil, fmt.Errorf("unknown vision model architecture: %s", arch)
|
||||
}
|
||||
@@ -51,12 +51,12 @@ func (c *ImageContext) Free(modelPath string) {
|
||||
return
|
||||
}
|
||||
|
||||
if c.clip != nil {
|
||||
c.clip.Free()
|
||||
if c.mtmd != nil {
|
||||
c.mtmd.Free()
|
||||
}
|
||||
}
|
||||
|
||||
func (c *ImageContext) NewEmbed(llamaContext *llama.Context, data []byte) ([][]float32, error) {
|
||||
func (c *ImageContext) MultimodalTokenize(llamaContext *llama.Context, data []byte) ([]llama.MtmdChunk, error) {
|
||||
if c == nil {
|
||||
return nil, nil
|
||||
}
|
||||
@@ -70,10 +70,10 @@ func (c *ImageContext) NewEmbed(llamaContext *llama.Context, data []byte) ([][]f
|
||||
c.mu.Lock()
|
||||
defer c.mu.Unlock()
|
||||
|
||||
embed, err := c.findImage(hash)
|
||||
chunks, err := c.findImage(hash)
|
||||
if err != nil {
|
||||
if c.clip != nil {
|
||||
embed, err = c.clip.NewEmbed(llamaContext, data)
|
||||
if c.mtmd != nil {
|
||||
chunks, err = c.mtmd.MultimodalTokenize(llamaContext, data)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -81,10 +81,10 @@ func (c *ImageContext) NewEmbed(llamaContext *llama.Context, data []byte) ([][]f
|
||||
return nil, errors.New("received image but vision model not loaded")
|
||||
}
|
||||
|
||||
c.addImage(hash, embed)
|
||||
c.addImage(hash, chunks)
|
||||
}
|
||||
|
||||
return embed, nil
|
||||
return chunks, nil
|
||||
}
|
||||
|
||||
func (c *ImageContext) BatchSize(configuredBatchSize int) int {
|
||||
@@ -102,7 +102,7 @@ func (c *ImageContext) EmbedSize(llamaContext *llama.Context) int {
|
||||
|
||||
type imageCache struct {
|
||||
key uint64
|
||||
val [][]float32
|
||||
val []llama.MtmdChunk
|
||||
lastUsed time.Time
|
||||
}
|
||||
|
||||
@@ -114,7 +114,7 @@ func (c *ImageContext) hashImage(image []byte) uint64 {
|
||||
|
||||
var errImageNotFound = errors.New("image not found in cache")
|
||||
|
||||
func (c *ImageContext) findImage(hash uint64) ([][]float32, error) {
|
||||
func (c *ImageContext) findImage(hash uint64) ([]llama.MtmdChunk, error) {
|
||||
for i := range c.images {
|
||||
if c.images[i].key == hash {
|
||||
slog.Debug("loading image embeddings from cache", "entry", i)
|
||||
@@ -126,7 +126,7 @@ func (c *ImageContext) findImage(hash uint64) ([][]float32, error) {
|
||||
return nil, errImageNotFound
|
||||
}
|
||||
|
||||
func (c *ImageContext) addImage(hash uint64, embed [][]float32) {
|
||||
func (c *ImageContext) addImage(hash uint64, embed []llama.MtmdChunk) {
|
||||
best := time.Now()
|
||||
var bestImage int
|
||||
|
||||
|
||||
Reference in New Issue
Block a user