Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support

This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Shang Chieh Tseng
2025-11-05 14:03:05 +08:00
parent fabe2c5cb7
commit ef14fb5b26
817 changed files with 241634 additions and 70888 deletions

View File

@@ -17,7 +17,7 @@ type ImageContext struct {
// mu is required to be held when generating embeddings or accessing the cache
mu sync.Mutex
clip *llama.ClipContext
mtmd *llama.MtmdContext
// cache of images to embeddings
images []imageCache
@@ -32,7 +32,7 @@ func NewImageContext(llamaContext *llama.Context, modelPath string) (*ImageConte
var c ImageContext
if arch == "clip" {
c.clip, err = llama.NewClipContext(llamaContext, modelPath)
c.mtmd, err = llama.NewMtmdContext(llamaContext, modelPath)
} else {
return nil, fmt.Errorf("unknown vision model architecture: %s", arch)
}
@@ -51,12 +51,12 @@ func (c *ImageContext) Free(modelPath string) {
return
}
if c.clip != nil {
c.clip.Free()
if c.mtmd != nil {
c.mtmd.Free()
}
}
func (c *ImageContext) NewEmbed(llamaContext *llama.Context, data []byte) ([][]float32, error) {
func (c *ImageContext) MultimodalTokenize(llamaContext *llama.Context, data []byte) ([]llama.MtmdChunk, error) {
if c == nil {
return nil, nil
}
@@ -70,10 +70,10 @@ func (c *ImageContext) NewEmbed(llamaContext *llama.Context, data []byte) ([][]f
c.mu.Lock()
defer c.mu.Unlock()
embed, err := c.findImage(hash)
chunks, err := c.findImage(hash)
if err != nil {
if c.clip != nil {
embed, err = c.clip.NewEmbed(llamaContext, data)
if c.mtmd != nil {
chunks, err = c.mtmd.MultimodalTokenize(llamaContext, data)
if err != nil {
return nil, err
}
@@ -81,10 +81,10 @@ func (c *ImageContext) NewEmbed(llamaContext *llama.Context, data []byte) ([][]f
return nil, errors.New("received image but vision model not loaded")
}
c.addImage(hash, embed)
c.addImage(hash, chunks)
}
return embed, nil
return chunks, nil
}
func (c *ImageContext) BatchSize(configuredBatchSize int) int {
@@ -102,7 +102,7 @@ func (c *ImageContext) EmbedSize(llamaContext *llama.Context) int {
type imageCache struct {
key uint64
val [][]float32
val []llama.MtmdChunk
lastUsed time.Time
}
@@ -114,7 +114,7 @@ func (c *ImageContext) hashImage(image []byte) uint64 {
var errImageNotFound = errors.New("image not found in cache")
func (c *ImageContext) findImage(hash uint64) ([][]float32, error) {
func (c *ImageContext) findImage(hash uint64) ([]llama.MtmdChunk, error) {
for i := range c.images {
if c.images[i].key == hash {
slog.Debug("loading image embeddings from cache", "entry", i)
@@ -126,7 +126,7 @@ func (c *ImageContext) findImage(hash uint64) ([][]float32, error) {
return nil, errImageNotFound
}
func (c *ImageContext) addImage(hash uint64, embed [][]float32) {
func (c *ImageContext) addImage(hash uint64, embed []llama.MtmdChunk) {
best := time.Now()
var bestImage int