Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support

This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
Shang Chieh Tseng
2025-11-05 14:03:05 +08:00
parent fabe2c5cb7
commit ef14fb5b26
817 changed files with 241634 additions and 70888 deletions

View File

@@ -34,8 +34,8 @@ type InputCache struct {
func NewInputCache(model model.Model, kvCacheType string, kvSize int32, numSlots int, batchSize int, multiUserCache bool) (*InputCache, error) {
numCtx := kvSize / int32(numSlots)
if numCtx < 1 {
return nil, fmt.Errorf("must have at least one kv cache entry per parallel sequence (kv: %v parallel: %v)", kvSize, numSlots)
if int(numCtx) < batchSize {
return nil, fmt.Errorf("kv size must be at least as large as batch size * parallel (kv: %v batch: %v parallel: %v)", kvSize, batchSize, numSlots)
}
slots := make([]InputCacheSlot, numSlots)
@@ -70,11 +70,13 @@ func kvCacheTypeFromStr(s string) ml.DType {
}
func (c *InputCache) Close() {
c.cache.Close()
if c != nil && c.cache != nil {
c.cache.Close()
}
}
// Locking: Operations on InputCacheSlot (including finding one
// through LoadCacheSlot) require a lock to be be held that serializes
// through LoadCacheSlot) require a lock to be held that serializes
// these operations with each other and processBatch
type InputCacheSlot struct {
@@ -82,7 +84,7 @@ type InputCacheSlot struct {
Id int
// Inputs that are stored in the KV cache
Inputs []input.Input
Inputs []*input.Input
// is this cache actively being processed as part of a sequence?
InUse bool
@@ -91,7 +93,7 @@ type InputCacheSlot struct {
lastUsed time.Time
}
func (c *InputCache) LoadCacheSlot(prompt []input.Input) (*InputCacheSlot, []input.Input, error) {
func (c *InputCache) LoadCacheSlot(prompt []*input.Input, cachePrompt bool) (*InputCacheSlot, []*input.Input, error) {
var slot *InputCacheSlot
var numPast int32
var err error
@@ -109,6 +111,10 @@ func (c *InputCache) LoadCacheSlot(prompt []input.Input) (*InputCacheSlot, []inp
return nil, nil, err
}
if !cachePrompt {
numPast = 0
}
slot.InUse = true
slot.lastUsed = time.Now()
@@ -142,7 +148,7 @@ func (c *InputCache) LoadCacheSlot(prompt []input.Input) (*InputCacheSlot, []inp
return slot, prompt, nil
}
func (c *InputCache) findLongestCacheSlot(prompt []input.Input) (*InputCacheSlot, int32, error) {
func (c *InputCache) findLongestCacheSlot(prompt []*input.Input) (*InputCacheSlot, int32, error) {
longest := int32(-1)
var longestSlot *InputCacheSlot
@@ -165,7 +171,7 @@ func (c *InputCache) findLongestCacheSlot(prompt []input.Input) (*InputCacheSlot
return longestSlot, longest, nil
}
func (c *InputCache) findBestCacheSlot(prompt []input.Input) (*InputCacheSlot, int32, error) {
func (c *InputCache) findBestCacheSlot(prompt []*input.Input) (*InputCacheSlot, int32, error) {
oldest := time.Now()
var oldestSlot *InputCacheSlot
@@ -201,7 +207,7 @@ func (c *InputCache) findBestCacheSlot(prompt []input.Input) (*InputCacheSlot, i
if longest > 0 && longestSlot != oldestSlot {
slog.Debug("forking cache slot", "src", longestSlot.Id, "dst", oldestSlot.Id, "inputs", longest, "total",
len(longestSlot.Inputs))
oldestSlot.Inputs = make([]input.Input, longest)
oldestSlot.Inputs = make([]*input.Input, longest)
copy(oldestSlot.Inputs, longestSlot.Inputs[:longest])
if c.cache != nil {
c.cache.CopyPrefix(longestSlot.Id, oldestSlot.Id, longest)
@@ -211,7 +217,7 @@ func (c *InputCache) findBestCacheSlot(prompt []input.Input) (*InputCacheSlot, i
return oldestSlot, longest, nil
}
func countCommonPrefix(a []input.Input, b []input.Input) int32 {
func countCommonPrefix(a []*input.Input, b []*input.Input) int32 {
var count int32
for i := range a {
@@ -229,24 +235,32 @@ func countCommonPrefix(a []input.Input, b []input.Input) int32 {
return count
}
// TODO(jessegross): If we need to reprocess the inputs we should ensure that
// we don't split up a SameBatch
func (c *InputCache) ShiftDiscard(inputLen int32, numKeep int32) int32 {
targetFree := (c.numCtx - numKeep) / 2
targetFree = max(targetFree, 1)
// ShiftDiscard computes how many inputs can be discarded from the cache. Inputs in the same batch
// are discarded together.
func (c *InputCache) ShiftDiscard(inputs []*input.Input, numKeep int32) int32 {
targetFree := max((c.numCtx-numKeep)/2, 1)
currentFree := c.numCtx - int32(len(inputs))
currentFree := c.numCtx - inputLen
discard := targetFree - currentFree
var discard, sameBatch int32
for _, input := range inputs[numKeep:] {
if sameBatch <= 0 && currentFree >= targetFree {
break
}
if discard < 0 {
discard = 0
sameBatch--
currentFree++
discard++
if input.SameBatch > 0 {
sameBatch = int32(input.SameBatch)
}
}
return discard
}
type ErrReprocessInputs struct {
Inputs []input.Input
Inputs []*input.Input
}
func (e *ErrReprocessInputs) Error() string {
@@ -263,7 +277,7 @@ func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int32) error {
}
inputLen := int32(len(slot.Inputs))
discard := c.ShiftDiscard(inputLen, numKeep)
discard := c.ShiftDiscard(slot.Inputs, numKeep)
if discard <= 0 {
return nil
@@ -279,13 +293,13 @@ func (c *InputCache) ShiftCacheSlot(slot *InputCacheSlot, numKeep int32) error {
"id", slot.Id, "error", err)
// Create new input slice with preserved tokens (numKeep + remaining tokens after discard)
newInputs := make([]input.Input, numKeep+inputLen-(numKeep+discard))
newInputs := make([]*input.Input, numKeep+inputLen-(numKeep+discard))
copy(newInputs[:numKeep], slot.Inputs[:numKeep])
copy(newInputs[numKeep:], slot.Inputs[numKeep+discard:])
// Reset the cache
_ = c.cache.Remove(slot.Id, 0, math.MaxInt32)
slot.Inputs = []input.Input{}
slot.Inputs = []*input.Input{}
// Return error with inputs that need to be reprocessed
return &ErrReprocessInputs{Inputs: newInputs}

View File

@@ -3,6 +3,7 @@ package ollamarunner
import (
"errors"
"fmt"
"slices"
"testing"
"time"
@@ -13,50 +14,50 @@ import (
func TestCountCommon(t *testing.T) {
tests := []struct {
name string
t1 []input.Input
t2 []input.Input
t1 []*input.Input
t2 []*input.Input
expected int32
}{
{
name: "Equal",
t1: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t1: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t2: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
expected: 3,
},
{
name: "Prefix",
t1: []input.Input{{Token: 1}},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t1: []*input.Input{{Token: 1}},
t2: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
expected: 1,
},
{
name: "Image Prefix",
t1: []input.Input{{MultimodalHash: 1}},
t2: []input.Input{{MultimodalHash: 1}, {MultimodalHash: 2}, {MultimodalHash: 3}},
t1: []*input.Input{{MultimodalHash: 1}},
t2: []*input.Input{{MultimodalHash: 1}, {MultimodalHash: 2}, {MultimodalHash: 3}},
expected: 1,
},
{
name: "Mixed",
t1: []input.Input{{Token: 1}, {MultimodalHash: 1}},
t2: []input.Input{{Token: 1}, {MultimodalHash: 1}, {Token: 5}},
t1: []*input.Input{{Token: 1}, {MultimodalHash: 1}},
t2: []*input.Input{{Token: 1}, {MultimodalHash: 1}, {Token: 5}},
expected: 2,
},
{
name: "Mixed, Same Length",
t1: []input.Input{{Token: 1}, {MultimodalHash: 1}},
t2: []input.Input{{Token: 1}, {MultimodalHash: 2}},
t1: []*input.Input{{Token: 1}, {MultimodalHash: 1}},
t2: []*input.Input{{Token: 1}, {MultimodalHash: 2}},
expected: 1,
},
{
name: "Empty",
t1: []input.Input{},
t2: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
t1: []*input.Input{},
t2: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
expected: 0,
},
{
name: "Both Empty",
t1: []input.Input{},
t2: []input.Input{},
t1: []*input.Input{},
t2: []*input.Input{},
expected: 0,
},
}
@@ -80,7 +81,7 @@ func TestFindCacheSlot(t *testing.T) {
tests := []struct {
name string
cache InputCache
prompt []input.Input
prompt []*input.Input
longest expected
best expected
}{
@@ -89,18 +90,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{},
Inputs: []*input.Input{},
InUse: false,
lastUsed: time.Time{},
},
{
Id: 1,
Inputs: []input.Input{},
Inputs: []*input.Input{},
InUse: false,
lastUsed: time.Time{},
},
}},
prompt: []input.Input{{Token: 1}},
prompt: []*input.Input{{Token: 1}},
longest: expected{result: 0, len: 0},
best: expected{result: 0, len: 0},
},
@@ -109,18 +110,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}},
Inputs: []*input.Input{{Token: 1}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []input.Input{{Token: 1}, {Token: 2}},
prompt: []*input.Input{{Token: 1}, {Token: 2}},
longest: expected{result: 1, len: 2},
best: expected{result: 1, len: 2},
},
@@ -129,18 +130,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{},
Inputs: []*input.Input{},
InUse: false,
lastUsed: time.Time{},
},
}},
prompt: []input.Input{{Token: 2}},
prompt: []*input.Input{{Token: 2}},
longest: expected{result: 0, len: 0},
best: expected{result: 1, len: 0},
},
@@ -150,19 +151,19 @@ func TestFindCacheSlot(t *testing.T) {
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{},
Inputs: []*input.Input{},
InUse: false,
lastUsed: time.Time{},
},
},
},
prompt: []input.Input{{Token: 1}},
prompt: []*input.Input{{Token: 1}},
longest: expected{result: 0, len: 1},
best: expected{result: 1, len: 1},
},
@@ -171,18 +172,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}},
Inputs: []*input.Input{{Token: 1}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []input.Input{{Token: 2}, {Token: 3}},
prompt: []*input.Input{{Token: 2}, {Token: 3}},
longest: expected{result: 0, len: 0},
best: expected{result: 1, len: 0},
},
@@ -191,18 +192,18 @@ func TestFindCacheSlot(t *testing.T) {
cache: InputCache{slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: true,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{{Token: 1}},
Inputs: []*input.Input{{Token: 1}},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
}},
prompt: []input.Input{{Token: 1}, {Token: 2}},
prompt: []*input.Input{{Token: 1}, {Token: 2}},
longest: expected{result: 1, len: 1},
best: expected{result: 1, len: 2},
},
@@ -238,59 +239,137 @@ func TestShiftDiscard(t *testing.T) {
name string
numCtx int32
numKeep int32
inputLen int32
inputs []*input.Input
expected int32
}{
{
name: "Shift",
numCtx: 2048,
numKeep: 5,
inputLen: 2048,
inputs: slices.Repeat([]*input.Input{{}}, 2048),
expected: 1021,
},
{
name: "Max Keep",
numCtx: 2048,
numKeep: 2047,
inputLen: 2048,
inputs: slices.Repeat([]*input.Input{{}}, 2048),
expected: 1,
},
{
name: "No Keep",
numCtx: 2048,
numKeep: 0,
inputLen: 2048,
inputs: slices.Repeat([]*input.Input{{}}, 2048),
expected: 1024,
},
{
name: "Truncate",
numCtx: 2048,
numKeep: 5,
inputLen: 5000,
inputs: slices.Repeat([]*input.Input{{}}, 5000),
expected: 3973,
},
{
name: "Truncate Keep",
numCtx: 2048,
numKeep: 2047,
inputLen: 5000,
inputs: slices.Repeat([]*input.Input{{}}, 5000),
expected: 2953,
},
{
name: "No Op",
numCtx: 2048,
numKeep: 5,
inputLen: 512,
inputs: slices.Repeat([]*input.Input{{}}, 512),
expected: 0,
},
{
name: "Same Batch",
numCtx: 2048,
numKeep: 5,
inputs: slices.Collect(func(yield func(*input.Input) bool) {
for range 1024 {
if !yield(&input.Input{}) {
return
}
}
if !yield(&input.Input{SameBatch: 512 - 1}) {
return
}
for range 2048 - 1024 - 1 {
if !yield(&input.Input{}) {
return
}
}
}),
expected: 1531,
},
{
name: "Same Batch Near Start",
numCtx: 2048,
numKeep: 5,
inputs: slices.Collect(func(yield func(*input.Input) bool) {
for range 10 {
if !yield(&input.Input{}) {
return
}
}
if !yield(&input.Input{SameBatch: 512 - 1}) {
return
}
for range 2048 - 10 - 1 {
if !yield(&input.Input{}) {
return
}
}
}),
expected: 1021,
},
{
name: "Consecutive Same Batch",
numCtx: 32,
inputs: slices.Collect(func(yield func(*input.Input) bool) {
for i := range 32 {
input := input.Input{}
if i%10 == 0 {
input.SameBatch = 10 - 1
}
if !yield(&input) {
return
}
}
}),
expected: 20,
},
{
name: "Overlapping Same Batch",
numCtx: 32,
inputs: slices.Collect(func(yield func(*input.Input) bool) {
for i := range 32 {
input := input.Input{}
if slices.Contains([]int{4, 8, 14}, i) {
input.SameBatch = 10 - 1
}
if !yield(&input) {
return
}
}
}),
expected: 24,
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
c := InputCache{numCtx: tt.numCtx}
result := c.ShiftDiscard(tt.inputLen, tt.numKeep)
result := c.ShiftDiscard(tt.inputs, tt.numKeep)
if result != tt.expected {
t.Errorf("shiftDiscard(ctx: %v, keep: %v input: %v): have %v; want %v", tt.numCtx, tt.numKeep, tt.inputLen, result, tt.expected)
t.Errorf("shiftDiscard(ctx: %v, keep: %v inputs: %v): have %v; want %v", tt.numCtx, tt.numKeep, len(tt.inputs), result, tt.expected)
}
})
}
@@ -300,7 +379,7 @@ func TestLoadCacheSlot(t *testing.T) {
tests := []struct {
name string
cache InputCache
prompt []input.Input
prompt []*input.Input
wantErr bool
expectedSlotId int
expectedPrompt int // expected length of remaining prompt
@@ -312,19 +391,19 @@ func TestLoadCacheSlot(t *testing.T) {
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{},
Inputs: []*input.Input{},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
prompt: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
wantErr: false,
expectedSlotId: 0,
expectedPrompt: 1, // Only token 3 remains
@@ -336,19 +415,19 @@ func TestLoadCacheSlot(t *testing.T) {
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
{
Id: 1,
Inputs: []input.Input{},
Inputs: []*input.Input{},
InUse: false,
lastUsed: time.Now().Add(-2 * time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
prompt: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
wantErr: false,
expectedSlotId: 0,
expectedPrompt: 1, // Only token 3 remains
@@ -360,13 +439,13 @@ func TestLoadCacheSlot(t *testing.T) {
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: false,
lastUsed: time.Now().Add(-time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}},
prompt: []*input.Input{{Token: 1}, {Token: 2}},
wantErr: false,
expectedSlotId: 0,
expectedPrompt: 1, // Should leave 1 token for sampling
@@ -378,13 +457,13 @@ func TestLoadCacheSlot(t *testing.T) {
slots: []InputCacheSlot{
{
Id: 0,
Inputs: []input.Input{{Token: 1}, {Token: 2}},
Inputs: []*input.Input{{Token: 1}, {Token: 2}},
InUse: true,
lastUsed: time.Now().Add(-time.Second),
},
},
},
prompt: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
prompt: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}},
wantErr: true,
expectedSlotId: -1,
expectedPrompt: -1,
@@ -393,7 +472,7 @@ func TestLoadCacheSlot(t *testing.T) {
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
slot, remainingPrompt, err := tt.cache.LoadCacheSlot(tt.prompt)
slot, remainingPrompt, err := tt.cache.LoadCacheSlot(tt.prompt, true)
// Check error state
if (err != nil) != tt.wantErr {
@@ -452,7 +531,7 @@ func TestShiftCacheSlot(t *testing.T) {
tests := []struct {
name string
numCtx int32
inputs []input.Input
inputs []*input.Input
numKeep int32
cacheErr bool
wantErr any
@@ -461,7 +540,7 @@ func TestShiftCacheSlot(t *testing.T) {
{
name: "Normal shift",
numCtx: 10,
inputs: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}, {Token: 4}, {Token: 5}, {Token: 6}, {Token: 7}, {Token: 8}, {Token: 9}, {Token: 10}},
inputs: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}, {Token: 4}, {Token: 5}, {Token: 6}, {Token: 7}, {Token: 8}, {Token: 9}, {Token: 10}},
numKeep: 2,
cacheErr: false, // No error
wantErr: nil,
@@ -470,7 +549,7 @@ func TestShiftCacheSlot(t *testing.T) {
{
name: "Cache removal fails",
numCtx: 10,
inputs: []input.Input{{Token: 1}, {Token: 2}, {Token: 3}, {Token: 4}, {Token: 5}, {Token: 6}, {Token: 7}, {Token: 8}, {Token: 9}, {Token: 10}},
inputs: []*input.Input{{Token: 1}, {Token: 2}, {Token: 3}, {Token: 4}, {Token: 5}, {Token: 6}, {Token: 7}, {Token: 8}, {Token: 9}, {Token: 10}},
numKeep: 2,
cacheErr: true,
wantErr: &ErrReprocessInputs{},
@@ -487,7 +566,7 @@ func TestShiftCacheSlot(t *testing.T) {
}
slot := &InputCacheSlot{
Id: 123,
Inputs: make([]input.Input, len(tt.inputs)),
Inputs: make([]*input.Input, len(tt.inputs)),
}
copy(slot.Inputs, tt.inputs)

View File

@@ -86,6 +86,9 @@ func (m multimodalStore) getTensor(backend ml.Backend, ctx ml.Context, in ml.Ten
computeCtx.Forward(tensors...)
entry.data = make([][]float32, len(entry.mm))
// Multimodal processing is computationally intensive, so treat it similarly to a large batch
computeCtx.SetBatchSize(512)
if !reserve {
computeCtx.Compute(tensors...)
@@ -102,7 +105,7 @@ func (m multimodalStore) getTensor(backend ml.Backend, ctx ml.Context, in ml.Ten
for i, t := range entry.mm {
if in == t.Tensor {
if !reserve {
return ctx.Input().FromFloatSlice(entry.data[i], t.Tensor.Shape()...), nil
return ctx.Input().FromFloats(entry.data[i], t.Tensor.Shape()...), nil
} else {
return ctx.Input().Empty(t.Tensor.DType(), t.Tensor.Shape()...), nil
}

File diff suppressed because it is too large Load Diff