mirror of
https://github.com/dogkeeper886/ollama37.git
synced 2025-12-18 03:37:09 +00:00
Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from official ollama/ollama repository and re-applying Tesla K80 compatibility patches. ## Key Changes ### CUDA Compute Capability 3.7 Support (Tesla K80) - Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt - Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset - Using 37-virtual (PTX with JIT compilation) for maximum compatibility ### Legacy Toolchain Compatibility - **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80) - **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7) - **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h) ### CPU Architecture Trade-offs Due to GCC 10.5 limitation, sacrificed newer CPU optimizations: - Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+) - Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA - Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility) ### Build System Updates - Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7 - Added -Wno-deprecated-gpu-targets flag to suppress warnings - Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI ### Upstream Sync Merged latest llama.cpp changes including: - Enhanced KV cache management with ISWA and hybrid memory support - Improved multi-modal support (mtmd framework) - New model architectures (Gemma3, Llama4, Qwen3, etc.) - GPU backend improvements for CUDA, Metal, and ROCm - Updated quantization support and GGUF format handling ### Documentation - Updated CLAUDE.md with comprehensive build instructions - Documented toolchain constraints and CPU architecture trade-offs - Removed outdated CI/CD workflows (tesla-k80-*.yml) - Cleaned up temporary development artifacts ## Rationale This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in official Ollama due to legacy driver/CUDA requirements. The toolchain constraint creates a deadlock: - K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI We accept the loss of cutting-edge CPU optimizations to enable running modern LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU). 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -24,6 +24,7 @@ import (
|
||||
"github.com/ollama/ollama/api"
|
||||
"github.com/ollama/ollama/envconfig"
|
||||
"github.com/ollama/ollama/fs/gguf"
|
||||
"github.com/ollama/ollama/model/parsers"
|
||||
"github.com/ollama/ollama/parser"
|
||||
"github.com/ollama/ollama/template"
|
||||
"github.com/ollama/ollama/thinking"
|
||||
@@ -73,34 +74,47 @@ func (m *Model) Capabilities() []model.Capability {
|
||||
capabilities := []model.Capability{}
|
||||
|
||||
// Check for completion capability
|
||||
f, err := gguf.Open(m.ModelPath)
|
||||
if err == nil {
|
||||
defer f.Close()
|
||||
if m.ModelPath != "" {
|
||||
f, err := gguf.Open(m.ModelPath)
|
||||
if err == nil {
|
||||
defer f.Close()
|
||||
|
||||
if f.KeyValue("pooling_type").Valid() {
|
||||
capabilities = append(capabilities, model.CapabilityEmbedding)
|
||||
if f.KeyValue("pooling_type").Valid() {
|
||||
capabilities = append(capabilities, model.CapabilityEmbedding)
|
||||
} else {
|
||||
// If no embedding is specified, we assume the model supports completion
|
||||
capabilities = append(capabilities, model.CapabilityCompletion)
|
||||
}
|
||||
if f.KeyValue("vision.block_count").Valid() {
|
||||
capabilities = append(capabilities, model.CapabilityVision)
|
||||
}
|
||||
} else {
|
||||
// If no embedding is specified, we assume the model supports completion
|
||||
capabilities = append(capabilities, model.CapabilityCompletion)
|
||||
slog.Error("couldn't open model file", "error", err)
|
||||
}
|
||||
if f.KeyValue("vision.block_count").Valid() {
|
||||
capabilities = append(capabilities, model.CapabilityVision)
|
||||
} else if len(m.Config.Capabilities) > 0 {
|
||||
for _, c := range m.Config.Capabilities {
|
||||
capabilities = append(capabilities, model.Capability(c))
|
||||
}
|
||||
} else {
|
||||
slog.Error("couldn't open model file", "error", err)
|
||||
slog.Warn("unknown capabilities for model", "model", m.Name)
|
||||
}
|
||||
|
||||
if m.Template == nil {
|
||||
return capabilities
|
||||
}
|
||||
|
||||
builtinParser := parsers.ParserForName(m.Config.Parser)
|
||||
// Check for tools capability
|
||||
if slices.Contains(m.Template.Vars(), "tools") {
|
||||
v, err := m.Template.Vars()
|
||||
if err != nil {
|
||||
slog.Warn("model template contains errors", "error", err)
|
||||
}
|
||||
if slices.Contains(v, "tools") || (builtinParser != nil && builtinParser.HasToolSupport()) {
|
||||
capabilities = append(capabilities, model.CapabilityTools)
|
||||
}
|
||||
|
||||
// Check for insert capability
|
||||
if slices.Contains(m.Template.Vars(), "suffix") {
|
||||
if slices.Contains(v, "suffix") {
|
||||
capabilities = append(capabilities, model.CapabilityInsert)
|
||||
}
|
||||
|
||||
@@ -109,10 +123,16 @@ func (m *Model) Capabilities() []model.Capability {
|
||||
capabilities = append(capabilities, model.CapabilityVision)
|
||||
}
|
||||
|
||||
// Skip the thinking check if it's already set
|
||||
if slices.Contains(capabilities, "thinking") {
|
||||
return capabilities
|
||||
}
|
||||
|
||||
// Check for thinking capability
|
||||
openingTag, closingTag := thinking.InferTags(m.Template.Template)
|
||||
hasTags := openingTag != "" && closingTag != ""
|
||||
if hasTags || m.Config.ModelFamily == "gptoss" {
|
||||
isGptoss := slices.Contains([]string{"gptoss", "gpt-oss"}, m.Config.ModelFamily)
|
||||
if hasTags || isGptoss || (builtinParser != nil && builtinParser.HasThinkingSupport()) {
|
||||
capabilities = append(capabilities, model.CapabilityThinking)
|
||||
}
|
||||
|
||||
@@ -198,6 +218,20 @@ func (m *Model) String() string {
|
||||
})
|
||||
}
|
||||
|
||||
if m.Config.Renderer != "" {
|
||||
modelfile.Commands = append(modelfile.Commands, parser.Command{
|
||||
Name: "renderer",
|
||||
Args: m.Config.Renderer,
|
||||
})
|
||||
}
|
||||
|
||||
if m.Config.Parser != "" {
|
||||
modelfile.Commands = append(modelfile.Commands, parser.Command{
|
||||
Name: "parser",
|
||||
Args: m.Config.Parser,
|
||||
})
|
||||
}
|
||||
|
||||
for k, v := range m.Options {
|
||||
switch v := v.(type) {
|
||||
case []any:
|
||||
@@ -236,8 +270,19 @@ type ConfigV2 struct {
|
||||
ModelFormat string `json:"model_format"`
|
||||
ModelFamily string `json:"model_family"`
|
||||
ModelFamilies []string `json:"model_families"`
|
||||
ModelType string `json:"model_type"`
|
||||
FileType string `json:"file_type"`
|
||||
ModelType string `json:"model_type"` // shown as Parameter Size
|
||||
FileType string `json:"file_type"` // shown as Quantization Level
|
||||
Renderer string `json:"renderer,omitempty"`
|
||||
Parser string `json:"parser,omitempty"`
|
||||
|
||||
RemoteHost string `json:"remote_host,omitempty"`
|
||||
RemoteModel string `json:"remote_model,omitempty"`
|
||||
|
||||
// used for remotes
|
||||
Capabilities []string `json:"capabilities,omitempty"`
|
||||
ContextLen int `json:"context_length,omitempty"`
|
||||
EmbedLen int `json:"embedding_length,omitempty"`
|
||||
BaseName string `json:"base_name,omitempty"`
|
||||
|
||||
// required by spec
|
||||
Architecture string `json:"architecture"`
|
||||
|
||||
Reference in New Issue
Block a user