Commit Graph

18 Commits

Author SHA1 Message Date
Shang Chieh Tseng
ef14fb5b26 Sync with upstream ollama/ollama and restore Tesla K80 (compute 3.7) support
This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.

## Key Changes

### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility

### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)

### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)

### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI

### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling

### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts

## Rationale

This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI

We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-05 14:03:05 +08:00
Shang Chieh Tseng
cbcbc9ae07 Add support for new models and fix GitHub issues
- Add Gemma3n model support with text generation capabilities
- Add new CUDA mean operations for improved performance
- Add macOS documentation and performance tests
- Update LLAMA patches for ROCm/CUDA compatibility
- Fix various model conversion and processing issues
- Update CI workflows and build configurations
- Add library model tests and Shakespeare test data

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-07-20 00:12:36 +08:00
Michael Yang
58245413f4 next ollama runner (#7913)
feat: add new Ollama engine using ggml through cgo

This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.

- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations

This is the first implementation of the new engine. Follow up PRs will implement more features:

- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon

Co-authored-by: Bruce MacDonald <brucewmacdonald@gmail.com>
2025-02-13 16:31:21 -08:00
Patrick Devine
c7cb0f0602 image processing for llama3.2 (#6963)
Co-authored-by: jmorganca <jmorganca@gmail.com>
Co-authored-by: Michael Yang <mxyng@pm.me>
Co-authored-by: Jesse Gross <jesse@ollama.com>
2024-10-18 16:12:35 -07:00
Michael Yang
b732beba6a lint 2024-08-01 17:06:06 -07:00
Jeffrey Morgan
20090f3172 preserve last assistant message (#5802) 2024-07-19 20:19:26 -07:00
Michael Yang
d290e87513 add suffix support to generate endpoint
this change is triggered by the presence of "suffix", particularly
useful for code completion tasks
2024-07-16 14:31:35 -07:00
Michael Yang
36c87c433b template: preprocess message and collect system 2024-07-12 12:26:43 -07:00
Michael Yang
5056bb9c01 rename aggregate to contents 2024-07-11 17:00:26 -07:00
Michael Yang
57ec6901eb revert embedded templates to use prompt/response
This reverts commit 19753c18c0.

for compat. messages will be added at a later date
2024-07-11 14:49:35 -07:00
Michael Yang
e64f9ebb44 do no automatically aggregate system messages 2024-07-11 14:49:35 -07:00
Michael Yang
41be28096a add system prompt to first legacy template 2024-07-10 17:03:08 -07:00
Michael Yang
fb6cbc02fb update named templates 2024-07-05 16:29:32 -07:00
Michael Yang
326363b3a7 no funcs 2024-07-05 13:17:25 -07:00
Michael Yang
2c3fe1fd97 comments 2024-07-05 13:17:24 -07:00
Michael Yang
269ed6e6a2 update message processing 2024-07-05 13:16:58 -07:00
Michael Yang
a30915bde1 add capabilities 2024-07-01 10:47:43 -07:00
Michael Yang
58e3fff311 rename templates to template 2024-07-01 10:40:54 -07:00