Currently there is a single context per sequence, shared all by
all multimodal inputs. Since we build a vision encoder graph per
image, with a large number of inputs we can eventually hit the
maximum number of graph nodes per context.
This changes to use a separate context for each image, ensuring
that available resource limits are consistent.
Models may require that a set of inputs all be processed as part
of the same batch. For example, if an image has multiple patches
with fully connected attention between them, we should not split
the batch in the middle of an image.
Fixes#9697
Softcap isn't in the whitepaper/implementation for the language model so we should remove it. There is no discernible difference in output with it removed.
This is useful for a few things:
- Work around bugs, such as having 2 images in one batch
- Keep the image in a single batch for fully connected attention
- Improve performance by not evaluating embeddings multiple times