Redesigned the Docker build system from a single-stage monolithic design to a clean
two-stage architecture that separates build environment from compilation process while
maintaining library path compatibility.
## Architecture Changes
### Builder Image (docker/builder/Dockerfile)
- Provides base environment: CUDA 11.4, GCC 10, CMake 4, Go 1.25.3
- Built once, cached for subsequent builds (~90 min first time)
- Removed config file copying (cuda-11.4.sh, gcc-10.conf, go.sh)
- Added comprehensive comments explaining each build step
- Added git installation for runtime stage source cloning
### Runtime Image (docker/runtime/Dockerfile)
- Two-stage build using ollama37-builder as base for BOTH stages
- Stage 1 (compile): Clone source from GitHub → CMake configure → Build C/C++/CUDA → Build Go
- Stage 2 (runtime): Copy artifacts from stage 1 → Setup environment → Configure server
- Both stages use identical base image to ensure library path compatibility
- Removed -buildvcs=false flag (VCS info embedded from git clone)
- Comprehensive comments documenting library paths and design rationale
### Makefile (docker/Makefile)
- Simplified from 289 to 145 lines (-50% complexity)
- Removed: run, stop, logs, shell, test targets (use docker-compose instead)
- Removed: build orchestration targets (start-builder, copy-source, run-cmake, etc.)
- Removed: artifact copying (handled internally by multi-stage build)
- Focus: Build images only (build, build-builder, build-runtime, clean, help)
- All runtime operations delegated to docker-compose.yml
### Documentation (docker/README.md)
- Completely rewritten for new two-stage architecture
- Added "Build System Components" section with file structure
- Documented why both runtime stages use builder base (library path compatibility)
- Updated build commands to use Makefile
- Updated runtime commands to use docker-compose
- Added comprehensive troubleshooting section
- Added build time and image size tables
- Reference to archived single-stage design
## Key Design Decision
**Problem**: Compiled binaries have hardcoded library paths
**Solution**: Use ollama37-builder as base for BOTH compile and runtime stages
**Trade-off**: Larger image (~18GB) vs guaranteed library compatibility
## Benefits
- ✅ Cleaner separation of concerns (builder env vs compilation vs runtime)
- ✅ Builder image cached after first build (90 min → <1 min rebuilds)
- ✅ Runtime rebuilds only take ~10 min (pulls latest code from GitHub)
- ✅ No library path mismatches (identical base images)
- ✅ No complex artifact extraction (multi-stage COPY)
- ✅ Simpler Makefile focused on image building
- ✅ Runtime management via docker-compose (industry standard)
## Files Changed
Modified:
- docker/builder/Dockerfile - Added comments, removed COPY config files
- docker/runtime/Dockerfile - Converted to two-stage build
- docker/Makefile - Simplified to focus on image building only
- docker/README.md - Comprehensive rewrite for new architecture
Deleted:
- docker/builder/README.md - No longer needed
- docker/builder/cuda-11.4.sh - Generated in Dockerfile
- docker/builder/gcc-10.conf - Generated in Dockerfile
- docker/builder/go.sh - Generated in Dockerfile
Archived:
- docker/Dockerfile → docker/Dockerfile.single-stage.archived
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
- Add LD_LIBRARY_PATH to CMake and build steps for GCC 10 libraries
- Copy GCC 10 runtime libraries (libstdc++.so.6, libgcc_s.so.1) to output
- Update runtime Dockerfile to use minimal CUDA runtime packages
- Add -buildvcs=false flag to Go build to avoid Git VCS errors
- Simplify runtime container to only include necessary CUDA libraries
- Fix library path configuration for proper runtime library loading
This commit represents a complete rework after pulling the latest changes from
official ollama/ollama repository and re-applying Tesla K80 compatibility patches.
## Key Changes
### CUDA Compute Capability 3.7 Support (Tesla K80)
- Added sm_37 (compute 3.7) to CMAKE_CUDA_ARCHITECTURES in CMakeLists.txt
- Updated CMakePresets.json to include compute 3.7 in "CUDA 11" preset
- Using 37-virtual (PTX with JIT compilation) for maximum compatibility
### Legacy Toolchain Compatibility
- **NVIDIA Driver**: 470.256.02 (last version supporting Kepler/K80)
- **CUDA Version**: 11.4.4 (last CUDA 11.x supporting compute 3.7)
- **GCC Version**: 10.5.0 (required by CUDA 11.4 host_config.h)
### CPU Architecture Trade-offs
Due to GCC 10.5 limitation, sacrificed newer CPU optimizations:
- Alderlake CPU variant enabled WITHOUT AVX_VNNI (requires GCC 11+)
- Still supports: SSE4.2, AVX, F16C, AVX2, BMI2, FMA
- Performance impact: ~3-7% on newer CPUs (acceptable for K80 compatibility)
### Build System Updates
- Modified ml/backend/ggml/ggml/src/ggml-cuda/CMakeLists.txt for compute 3.7
- Added -Wno-deprecated-gpu-targets flag to suppress warnings
- Updated ml/backend/ggml/ggml/src/CMakeLists.txt for Alderlake without AVX_VNNI
### Upstream Sync
Merged latest llama.cpp changes including:
- Enhanced KV cache management with ISWA and hybrid memory support
- Improved multi-modal support (mtmd framework)
- New model architectures (Gemma3, Llama4, Qwen3, etc.)
- GPU backend improvements for CUDA, Metal, and ROCm
- Updated quantization support and GGUF format handling
### Documentation
- Updated CLAUDE.md with comprehensive build instructions
- Documented toolchain constraints and CPU architecture trade-offs
- Removed outdated CI/CD workflows (tesla-k80-*.yml)
- Cleaned up temporary development artifacts
## Rationale
This fork maintains Tesla K80 GPU support (compute 3.7) which was dropped in
official Ollama due to legacy driver/CUDA requirements. The toolchain constraint
creates a deadlock:
- K80 → Driver 470 → CUDA 11.4 → GCC 10 → No AVX_VNNI
We accept the loss of cutting-edge CPU optimizations to enable running modern
LLMs on legacy but still capable Tesla K80 hardware (12GB VRAM per GPU).
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>